TMT-China opportunities and challenges

Shude Mao

(NAOC; TMT-China project scientist)

Outline

- Historical Background
- Telescope, instruments, science
- Current status
- Summary

Thirty Meter Telescope (TMT)

Golden era of astronomy

LOFAR, LSST, IXO, TMT/GMT /ELT,...

LAMOST, FAST, Dome-A, TMT, ...

- Multi-wavelength, all multi-billion dollar
- International collaborations

Why is China joining TMT?

- Big Questions often require big telescopes, surveys
- China lags severely behind in general-purpose telescope
 - -2.4m vs. 10m
 - No site as good as Hawaii/Chile so far (Dome-A/TMT)
- China made rapid progress in S&T (LAMOST)
- In Feb. 2009, The Astrophysics Strategy Committee recommended TMT & Dome-A
- TMT: low risk with in-kind contributions, and Hawaii site offers synergies with facilities in China

TMT international partnership

Hawaii Mauna Kea

TMT Design

- D=30m, 492 segments
 - 3-mirror RC system
 - Primary mirror f/1
 - FOV: 20 minutes
- λ: 0.31- 28 μm
- Day-time observing!

First light instruments

Key features of TMT

- Large aperture
 - Observe more distant, fainter objects
- Multi-conjugate adaptive optics
 - Resolution higher than HST by a factor of ~10
 - t $\sim 1/D^4$ for same S/N ratio for point sources
- IR optimized:
 - High-redshift universe
 - Extrasolar planets, bio-markers
- These features enable TMT to perform unprecedented science when constructed

Science case for TMT

Science Case for the Chinese TMT Project

(http://tmt.bao.ac.cn/)

INTRODUCTION	
JUSTIFICATION AND BENEFITS IN JOINING TMT	
OVERVIEW OF TMT OBSERVATORY AND INSTRUMENTS	
TMT Observatory	
TMT OBSERVATORY TMT INSTRUMENTS.	
TMT SCIENCE	
FORMATION OF EXTRASOLAR PLANETS	11
Radial velocity detections of near planets.	
Direct imaging of extrasolar planets	
Planetary atmospheres from absorption line studies	
Protoplanetary disks	
FUNDAMENTAL COSMOLOGY	2
Nature of dark matter.	
Nature of dark energy	
Constancy of fundamental constants	
THE FORMATION AND GROWTH OF BLACK HOLES	
Massive black holes at the center of external galaxies	2
Black hole at the Galactic center	
4.3.3 Black holes at higher redshifts.	3
Physics of active galactic nuclei	3
STAR FORMATION IN THE LOCAL UNIVERSE AND AT HIGH-REDSHFIT	3
Initial mass function	
Collapse of molecular clouds into stars	3
Star formation at high redshift	3
Near-Infrared Emission Line Studies of ULIRGs	3
GALAXY FORMATION AND EVOLUTION	
Evolution of galaxy luminosity/mass function	4
Chemical evolution of galaxies	4
What lies between galaxies?	5
Strong gravitational lensing	
NEAR FIELD COSMOLOGY AND STELLAR ASTROPHYSICS	
Resolved stellar populations and kinematics in nearby galaxies	
Searching for first stars and cosmic stellar relics in the Galaxy	5
The merging history of the Galaxy and stellar abundances of Galactic globular clusters	6
Isotope abundances	6
Chemical abundances of resolved giant stars and HII regions in Local Group dwarf galaxies	
EARLY LIGHT HOUSES AND COSMIC REIONIZATION	
OTHER SCIENCES	
Spectroscopic study of low-mass stars, brown dwarfs and planets	
Stellar mass and intermediate mass black holes	7

Completed in Dec. 2009, involved 54 scientists in 8 science areas

- •系外行星系统 近距和高红移宇宙中的恒星形成 第一代天体与宇宙
 - 再电离

- •基础宇宙学 星系形成与演化

• 致密天体

- •黑洞的形成与增长 近场宇宙学与恒星物理

Black Hole Physics

- Can observe more faint stars, potentially test GR more accurately
- Determine BH mass dynamically to z ~0.4, and study their evolution

Team TMT-China

5 CAS institutes + many universities (PKU, USTC, Tsinghua, Nanjing University, etc.)

Chinese in-kind contributions

M1 mirror segments

- Polishing 82-types of a total of 574 segments is a major challenge for China; reviewed on 23/04/13
- Multi-national effort
 - China (NIAOT) \ Japan (Canon) \ India
 - US (ITT) and quality control
 - Scaling up, validation remain challenges!

Diffraction-limited observations with lasers

Lasers

- TIPC (理化所) leads in laser technology in some areas
- Laser power (20W) tested on the 1.8m telescope, producing an m~8 star
- Photon return efficiency too low: needs D2b repumping

Laser guide star facility

- IOE finished preliminary design of LGSF in 2010
- Personnel already working on KECK laser!
- Laser provider for other telescopes?

CIOMP (长光所): M3

WFOS (NIAOT, USTC)

Meeting on June 5-6, 2013 between UCSC/China

Larger roles? Review on Oct. 29, 2013

Since 2008, more than 200 bilateral visits, identified key high-tech in-kind contributions!

Challenge: export license

COMMODITIES:		TOTAL
QTY DESCRIPTION	ECCN	PRICE
1 MODEL: TMT PROJECT, TECHNOLOGY FOR THE	2E001	\$1
DEVELOPMENT OF ION FIGURING AS WELL AS FOR		
MRF, REACTIVE ATOM PLASMAS, INFLATABLE		
MEMBRANE TOOL FINISHING AND FLUID JET		
FINISHING.		
1 MODEL: TMT TECHNOLOGY, TECHNOLOGY FOR THE	2E003	\$1
APPLICATION OF INORGANIC OVERLAY COATINGS O	R	
INORGANIC SURFACE MODIFICATION COATINGS TO		
NON-ELECTRONIC SUSTRATES.		
D464486		
VALIDATED: DEC 15 2011		
EXPIRES: DEC 31 2013		
1 MODEL: TMT TECHNOLOGY, TECHNOLOGY FOR THE	6E001	\$1
DEVELOPMENT AND PRODUCT OF OPTICAL CONTROL		
EQUIPMENT SPECIFICALLY DESIGNED TO MAINTAIN		
THE ALIGNMNET OF PHASED ARRAY OR PHASED		
SEGMENT MIRROR SYSTEMS CONSISTING OF MIRROR	S	
WITH A SEGMENT DIAMETER OR MAJOR AXIS LENGT	Н	
OF 1M OR MORE.		
		4.1
1 MODEL: TMT TECHNOLOGY, TECHNOLOGY FOR THE	6EUU2	\$1
DEVELOPMENT AND PRODUCT OF OPTICAL CONTROL		
EQUIPMENT SPECIFICALLY DESIGNED TO MAINTAIN		
THE ALIGNMNET OF PHASED ARRAY OR PHASED	C	
SEGMENT MIRROR SYSTEMS CONSISTING OF MIRROR		
WITH A SEGMENT DIAMETER OR MAJOR AXIS LENGT	n	
OF 1M OR MORE.		
	TOTAL:	\$4

- 4 person-months
 involving: high powered Washington
 lawyers
- TMT high-tech: \$4 granted in Dec. 2011
- Participation in some
 IR research deemed as
 basic research, no
 restriction

Challenges

- Supported by many Chinese leaders (刘延东、路 甬祥、徐匡迪)
- Still seeking full funding
 - > lack of government involvement on the US side?
 - consensus from Chinese community?
- Needs to strengthen the scientific community
 - > Domestic facilities (2.16m, 2.4m)
 - > Telescope Access Program (4-6.5m telescopes)

Telescope Access Program (TAP)

CFHT

3.6m15 nights

Palomar
5m
20 nights

Magellan 6.5m 4 nights

MMT

6.5m 10 nights

- •Total budget ~ \$1m/yr
- •Over-subscription ~3, 100-200 people submit proposals each semester

Opportunities

- TMT offers a unique opportunity for China to
 - engage in the next generation extremely large telescope: science, state-of-the-art instruments, system integration and management
 - > leverage other facilities
- East-Asia collaborations
 - Sharing of telescope times (north-south swap? Cost sharing of current telescopes?)
 - > Next-generation instruments?

Summary

- TMT offers a unique opportunity to make a quantum leap in the optical/IR for the Chinese community
- China is making solid progress in in-kind contributions towards TMT
 - Already stimulating progress in domestic projects!
- TMT is for the young generation!
 - foundation for future hyper-large telescope?
 - Opportunities to collaborate across east Asia

TMT is NOW!

August 25, 2013

August 27, 2013

TMT is fully ready for construction in 2014, exciting decade ahead!