Fast photometry at the Thai 2.4m telescope

Andrea Richichi (NARIT) & Collaborators NCU, Taiwan, 15 October, 2013

9th East Asian Meeting on Astronomy

Collaborators

Timing Considerations

Stellar **Physics**

Solar System

Fundamental astronomy

Thai National Telescope (TNT)

- 2.4m alt-az Ritchey-Chretien, f/10
- Two Nasmyth foci
- Nasmyth 1 with derotator, 4 ports, autoguider, fiber feeds
- imagers and spectrographs, visitor instruments
- Erected 2012, Inaugurated 2013
- First official season (Cycle 1) to start in November 2013, Call for Proposals, TAC

Also operated by NARIT:

- 0.5m f/6.5 (planning 0.7m)
- 60cm PROMPT8 robotic telescope at Cerro Tololo (incl. polarimeter)

High-Time Resolution Instrumentation at TNT

CCDs

- Apogee U9000 with drift-scan
- ANDOR iKon-L936 in subwindow mode
- up to 2ms, with limitations in time coverage

ULTRASPEC

- EMCCD, avalanche mode, frame transfer
- LN₂ cooled
- 1kx1k, 7.7 x 7.7 arcmin
- switchable gain
- 0.005s in subframes

OPTIMA (TBC)

- 12 APDs, fiber-fed
- photometry, polarimetry
- 10⁻⁶ s resolution
- accurate GPS timing
- plans for Cycle 2 visitor instrument at TNT

ULTRASPEC @ TNT

Built by Sheffield/Warwick/UKATC

PI: Vik Dhillon, Univ of Sheffield

- Frame-transfer EMCCD
- Previously used on ESO3.6m and NTT
- MoU signed with NARIT in 2012
- New Optics (0.45"/pixel, 7.7' FOV)
- 2 filter wheels, wide options
- At TNT: g'=24 in 30 min @ SNR=10 (TBC)
- Subframe readouts up to 400+ Hz
- Compact objects (isolated and in binaries), transients/survey follow-up
- Installation Aug 2013
- Commissioning Nov 2013
- 22 nights GTO in Cycle 1

ULTRASPEC GUI

¢.	III TRASPEC window creator and driver version 2.0.0							
File	Settings Filters	OEIIIASI EC WIIIdow	ereator and envely version z.e.			PGPL0T Window 2	×	
	Setup Observing Load application Save application Unfreeze Usdriver Sync windows	Post application Start exposure Stop exposure Focal Plane Mask	CCD output Avalanche gain Readout speed Clear enabled Drift Mode LED setting Exposure delay (millisecs) Number of exposures Binning factors (X, Y) Number of windows Windows Pair 1 Pair 2 Pair 3	Normal ▼ 0 - Fast ▼ 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 1 49 975 24 201 100 600 50 401 100	n 224 50	CCO 1 100 200 300 400 500 600 X pixels	700 800 900 1000	
Ta Pro Pri Ob Ru	rget name Drift moo ogramme ID N/A ncipal Investigator server(s) vsd n type @ data O flat	le test Verify lichichi O acquire O bias O dark O tech	Filters F V Grating NA Slit width NA Slit PA NA			PGPLOT Window 2	(-)(0)	
	Frame rate (Hz) Cycle time (s) Exposure time (s) Duty cycle (%) Total counts/expo Peak counts/expos S-to-N S-to-N S-to-N, 3 hr Exposure time Run number	116.164 0.009 0.008 95.42 sure 6 1.9 0.22 249.9 111 175	Bandpass O Magnitude <u>18</u> Seeing (FWHM, arcsec) <u>1.</u> Sky brightness O Airmass <u>1.</u>	ur @ gr _ rr _ i' 3.0 0 dark @ grey _ bright 5	C Beild a	e de la constante de la consta		
	must save tr change then05:32:22Sent comma05:32:22Executed con05:32:22Stopped exp	nem to disk before you can n. Ind ST mmand ST posing on Drift mode test	Response to command : Camera camera OK Camera software OK Camera camera IDLE	<u>= ST</u> 3				

ULTRASPEC Science

KSP1: PULSARS -both isolated (i.e. AXPs, SGRs, RRATs, XDINS, radio pulsars, Fermi pulsars) and in binaries (e.g. MSPs).

Leader: Dhillon (Sheffield)
 NN Ser: an eclipsing WD+RD detached binary (ULTRACAM)

KSP2: ECLIPSING CATACLYSMIC VARIABLES - focusing on mass/radius determinations.

KSP6: AM CVN STARS Leader: Steeghs (Warwick)

KSP7: GAMMA-RAY BURSTS Leader: Levan (Warwick)

KSP8: OCCULTATIONS AND TRANSITS Leader: Richichi (NARIT)

Brinkworth et al. (2006) Later detections of planet(s) (Chen 2009, Parsons 2009, Qian 2009)

Optical Timing Analyzer (OPTIMA)

Gottfried Kanbach & Arne Rau Max-Planck-Institut für Extraterrestrische Physik, Germany Agnieszka Słowikowska University of Zielona Góra, Poland

- Photon counting APD detectors, $\lambda\lambda$ =450-900 nm
- seeing-matched fibers with background subtraction
- Estimated m_v=20 in 1 s at TNT
- Polarimetric mode
- µs resolution, 5ns timing relative to GPS
- fast variable sources: pulsars, magnetars, cataclysmic variables, X-ray binaries, flare stars
- Possible deployment at TNT in Nov 2014 (Crab)

OPTIMA: the polar CV RXS J1845+4831

The extremely short orbital period of 79m 04s and eclipse duration of 98.7s show this system to be in an extreme state of binary evolution

Sharp ingress/egress and flat bottom (i.e. no change in brightness)

Overall minimum of lightcurve (m \sim 20) is deeper than eclipse:

- There must several components of emission:
- The bright spot (small and well defined)
- An accretion disk or stream
- the irradiated secondary

(Rau et al in preparation, 2013)

The Crab pulsar: time-resolved polarization

Słowikowska et al. 2009, 2013

HTR projects at TNT in Cycle 1

Nov 5-13, 2013: **ULTRASPEC** on-sky commissioning and first GTO science Total of 22 nights GTO, including Jan and Mar 2014

(preliminary Open Time allocation, TBC) **39 full** and **13 partial** nights dedicated to ULTRASPEC, most requested instrument Pulsations, Exoplanet Transits, Lunar Occultations, Trans-Neptunian Occultations, Times of Minima in Compact Binaries, Flickeri

Flickering in CVs

Concluding Remarks

- The Thai 2.4m telescope is ideally equipped to pursue high-time resolution observations
- Short events (few seconds) can be sampled up to 2ms using specialized modes on commercial CCDs
- The state-of-the-art ULTRASPEC instrument can be used for fast imaging on fields from 7'x7' to 4"x4" with speeds up to 4ms
- Cycle1 observations about to start, restricted to Thai and MoU institutes (shared-risk basis)

- Cycle 2 plans include more science nights in an open call
- Addition of OPTIMA as a visitor instrument for resolutions up to μs
- emphasis on collaborative networks for transients and transits
- complement the 2.4m by adding observational opportunities at other sites co-funded by NARIT

Extra Slides

NARIT and the TNO

- National Astronomical Research Institute of Thailand
- Public Organization (Min. of Science and Technology)
- 100+ staff, of which ~10 Thai and international researchers and postdocs
- stellar and extragalactic astrophysics, cosmology, optical and radio, theory and observations

NARIT Mission:

- develop human resources and technology
- leading astronomical center in SE Asia
- establish international collaborations (SEEAN)
- additional strategic
 directions: Antarctica,
 Radio Astronomy, Climate

Thai National Observatory

Doi Inthanon at 2,457 m above mean sea level

Latitude : 18 deg 34' 21" N Longitude : 98 deg 29' 7" E

Observing window : October to May Average seeing : ~1 arcsec Typical temperatures : +5°C to +15°C Mostly above the local inversion layer, located in a protected Mational Fark

Drift-Scanning CCDs

- affordable
- ms Time Resolution
- choice of pixel (low background noise)
- need correct pixel scale
- limited time range

Subwindows

- ms Time Resolution
- gapless
- long time range
- expensive
- sophisticated ROE_

Now also implemented on CCDs

ARNICA (Richichi et al 1996)

Example of a binary star (easy)

Example of a binary star (harder)

2MASS17073892-2554521, K=5.21

Example of a binary star (harder)

2MASS17073892-2554521, K=5.21

Networking Considerations

WET, SONG,

RXS J1845+4831 Summary:

Aligning all eclipses measured in 2011 and 2012, we find an eclipse (ingress) ephemeris of Porb = 0.054907167(2) d corresponding to 79 min 03.97923 (17) s with HJD0(UTC)=2455733.301427.

The eclipse duration is 98.7s.

Sharp ingress/egress and flat bottom (i.e. no change in brightness)

Overall minimum of lightcurve (m ~ 20) is deeper than eclipse

 \rightarrow There must several components of emission

- \rightarrow the bright spot (small and well defined
- \rightarrow an accretion disk or stream
- \rightarrow the irradiated secondary

 \rightarrow

(ref. to Horne et al., 1994)