# Probing Star Formation History at z>1 with Submm Sources

Wei-Hao Wang 王為豪 (IfA, Univ. of Hawai'i)

**Collaborators:** 

L. L. Cowie (Univ. of Hawai'i)

A. J. Barger (Univ. of Hawai'i)

J.-P. Kneib (Observatoire Midi-Pyrenees)



#### Outline

- Overview History and Open Questions
- Submm Source Number Counts Our 850 μm Surveys
- Redshift Distribution Our Optical/Near-IR Surveys

### **Historical Review**

Olber's Paradox:

Why is the sky dark at night?

### Extragalactic Background Light (EBL) at All Wavelengths



# EBL Resolved into Point Sources

- Optical/Near-IR EBL resolved by the HST and large ground-base telescopes.
- X-ray EBL resolved by Chandra.
- Submm/Far-IR EBL resolved by the JCMT. (Smail, Ivison, & Blain 1997)

## Submm Sources as a Probe to the High-z Universe

- Limited number of identifications indicate that most submm sources are starbursting protogalaxies at z>1.
- Submm radiation dominates the EBL.
- ⇒ Star formation at z>1 hidden by dust is as important as that observed by HST.
- Submm flux of a fixed luminosity is not function of redshift.
- ⇒ Submm sources are a powerful probe to the high-redshift universe.

#### Questions

- Energy sources? Morphology at submm and optical. Correlation between submm and other populations.
- How many submm sources are there?
- What's the redshift distribution of the submm sources?

# Submm Source Number Counts

- Instrument: Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescop (JCMT).
- Wide-field (~120 arcmin²) intermediate depth (rms~2mJy) surveys over the Hubble Deep Field North.
- Ultra-deep (rms=0.3-0.6 mJy) surveys over 7 strong lensing clusters.

### JCMT and SCUBA



JCMT: 15m single-dish submm telescpe on Mauna Kea.



**SCUBA:** the primary instrument on the JCMT for continuum observations. 37 bolometers at 850 μm and 91 bolometers at 350 μm.



Wang, Cowie, & Barger, in prepartation

- ~100h integration at 850 μm.
- ~120 arcmin<sup>2</sup> area coverage.
- 0.5 to 2 mJy rms sensitivity.

HDFN-WFPC2





### **Strong Lensing Clusters**

- 20-30h of integration on each cluster.
- Sources as faint as 0.1 mJy are detected.
- Totally 5 clusters were observed. Two more will be observed in 2003 and 2004.



Cowie, Barger, & Kneib 2002

### 850 µm Number Counts



### 850 µm Number Counts

#### • Bright-end counts from the 120 arcmin<sup>2</sup> HDF:

```
N(>8mJy) = 236 (+81/-75)
cf. N(>8mJy) = 320 (+80/-100) from Scott et al. 2002 (260 arcmin<sup>2</sup>)
```

#### Faint-end counts from 3 lensing clusters:

```
N(>0.5 \text{mJy}) = 18000 \ (+12000/-9000)
cf. N(>0.5 \text{mJy}) = 27000 \ (+/-10000) from Smail et al. 2002 (7 clusters)
```

#### • 850 μm EBL:

- 3.1 to 4.4 mJy/degree2 (COBE, Puget et al. 1996; Fixen et al. 1998)
- 3.2 mJy/degree<sup>2</sup> (our SCUBA sources between 0.3 and 12 mJy)

#### **Redshifts of Submm Sources**

#### Difficulties:

- Astrometry at submm is poor (FWHM=15" for JCMT) to pinpoint the location of the submm emission.
- Submm sources are optically faint due to dust extinction and K-correction. Optical spectrometry is time consuming even with Keck.

# Photometric Redshifts for Submm Sources

- Deep Optical/NIR broadband imaging covering the HDF-N and at least 5 clusters.
- B, V, R, I, z' bands using Suprime-Cam on Subaru and LRIS on Keck.
- U band using Mega-Prime on CFHT and KPNO 4m.
- J, H, K' bands using CISCO on Subaru and UH 2.2m.

#### Multi-Color Optical Image of the HDF



Capak, Cowie, & Hu, 2003



Capak & Cowie, 2003



# The Goal: Star Formation History at z>1

