A conceptual Design of a Geodetic VLBI Antenna in Korea

CONTENTS

Purpose

Functions of a Geodetic VLBI Antenna in Korea

Conceptual design of the Antenna

- Sensitivity
- Receiving frequency
- Recording system
- A Candidate Antenna

Purpose

To participate in international geodetic VLBI observations

To maintain the Korean geodetic origin precisely in ITRF

National Geographic Information Institute in Suwon
(1995年韓日 VLBI Observation)

(ITRF: International Terrestrial Reference Frame)

- < Blue points mean the "Stable" Stations used for defining ITRF by IERS>
- Korean Peninsula => relatively stable

(IERS: International Earth Rotation and Reference System Service)

Functions of a Geodetic VLBI Antenna · Establish a new geodetic reference point on the Korean Peninsula Pacif Define movement and boundaries of the tectonic plates in East Asia Monitor internal deformation in the Korean Peni nsul a Collaborate with Astronomical VLBI observation KVN: Korea VLBI Network VERA: VLBI Exploration of Radio Astrometry

Conceptual Design of Antenna

Sensi ti vi ty

Those sources with accurate, reliable positions that could be used to orient ICRF axes

Source flux density

ICRF Defining Sources(212)
ICRF Extended Sources(667)

< 8GHz correlated flux density values from VLBA Calibrator Survey Catalog>

Expected source flux densities at higher frequencies (Unit: Jy)

fre. a	0	0.3	0.5
8GHz	0.1 2	0.1 2	0.1 2
22GHz	0.1 2	0.074 1.476	0.060 1.206
32GHz	0.1 2	0.066 1.320	0.050 1.000
43GHz	0.1 2	0.060 1.208	0.0431 0.863

$$S_{\nu} \propto \nu^{-\alpha}$$

(ICRF: International Celestial Reference Frame)

Geodetic VLBI Antennas in the world

Map I mage

SUWON(20m level) — FORTLEZA(14.2m, Brazil)

S/N > 7 for VLBI in general

$$S/N = \eta_c \frac{S_{\nu}}{\sqrt{SEFD_1SEFD_2}} \sqrt{2B\tau_a}$$

$$SEFD = \frac{2kT_s}{A_e} \quad , \quad A_e = \frac{\eta_A L^2 \pi}{4}$$

$$(k=1.381 \times 10^{-23} J/K)$$
 assume
$$\eta_A = 0.5$$

$$\eta_c = 0.88$$

$$T_s = 120 K$$

$$B = 256 MHz$$

$$z_a = 200 \sec$$

The value of weakest observing source is adopted as 0.1Jy !
(SEFD : System Equivalent Flux Density)

SUWON(20m level) — Mobile Antenna(4m)

Assume

Diameter of mobile antenna = 4 m

Same conditions before

$$SEFD_{m} = \frac{2kT_{sm}}{A_{em}} = 5.2750 \times 10^{4} \text{ Jy}$$

For 30 brightest defining and extended sources

Minimum flux density = 0.6342 Jy (J0808+4950)

Upper limit for the $SEFD_s$ of Suwon antenna required

for observing the above minimum flux density source is $1.230 \times 10^4 Jy$

SEFD of the 20m antenna was 2.11×10^3 Jy.

Much better than above value

----> We can use a small mobile antenna for geodetic VLBI observations.

Recei vi ng Frequency

KVN: Korea VLBI Network

VERA: VLBI Exploration of Radio Astrometry

2/8GHz for Geodetic VLBI

-> may be shifted to 22GHz or 32GHz level

To avoid artificial interference (e.g. mobile phone)

To cooperate with KVN and VERA 22GHz & 43GHz are desirable.

Recording System

- Compatibility with international observations
 astronomical stations(KVN, VERA etc.)
- -> VSI (VLBI Standard Interface)
- · Extension to e-VLBI via communication network

Basic Specifications of the new geodetic VLBI antenna

- 20m class diameter
- 2 -- 32GHz Receiving Band (43GHz desirable)
- Mark V or Equivalent Recording System with speed ≥ 1Gbps
- VSI (VLBI Standard Interface)

As a Candidate antenna (Made in Korea)

```
Az-El mount

21m diameter

0. 5mm rms surface accuracy (good enough at 22 and 32 GHz)

Al most full motion( 5° -- 90° el evation , ±170° azi muth)

C - band( 3. 625 GHz -- 4. 2 GHz )

0. 3°/sec slew rate
```


