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Galactic Ridge X-ray Emission (GRXE)

X-ray background emission observed along with the Galactic disk and the
Galactic bulge. Total luminosity is ~1038 erg/s in 2-10 keV.

The origin of the GRXE has been one of great mysteries in X-ray
astrophysics over 40 years (e.g. Cooke et al. 1969).
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Imaging decomposition

Revnivtsev+09 - Chandra 1-Ms imaging s N
» 80% of GRXE was resolved as point sources. LG g et dse
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Remaining problem
* Source types not confirmed spectroscopically.

. . > 400 sources
* Spectral decomposition requires broadband S e

energy coverage.

Our approach
1. Use Suzaku X-ray telescope for broader energy coverage.

2. Construct a spectral model of , especially magnetic CVs.
3. Validate the spectral model using nearby CVs.

4. Use the CV model to fit the broadband GRXE spectrum.



Modeling X-ray spectrum of magnetic CVs

accreting gas

Accretion column formed by the strong magnetic field. _
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Near the WD surface (~100 km above the surface),
: : shock front
gas bulk velocity exceeds the sound velocity. 2-100km

accretion
A shock is formed, and converts bulk kinematic energy column

into thermal energy (kT > 10 keV).
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Modeling X-ray spectrum of magnetic CVs

accreting gas

gas bulk velocity exceeds the sound velocity.

into thermal energy (kT > 10 keV).

The heated gas cools via X-ray radiation.

* Density, temperature, and velocity can
be calculated based on conservation laws.
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plasma thermal cooling
function (e.g. Schure+09)

* These reduces to an initial value problem
of ODEs (Cropper+99, Suleimanov+05).

* WD mass and Fe abundance are main
free parameters of this spectral model.
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Accretion column formed by the strong magnetic field.

Near the WD surface (~100 km above the surface),

A shock is formed, and converts bulk kinematic energy
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—1- The model well reproduces observed spectra in 17 IPs.
- As a byproduct, white dwarf masses were estimated from this fitting.

)‘- Detailed results can be found in Yuasa+2010 A&A.
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Suzaku GRXE observations

- Suzaku’s Galactic center and Galactic bulge observations were summed to
produce a data set of the GRXE (avoiding known bright X-ray sources).

* Region 1 =590 ks; Region 2 = 420 ks — Total exposure = 1Ms

XIS mosaicf image

- HXD full fields of view
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Close-up view of the XIS spectrum

* Lines from lighter (S/Ar/Ca) elements coexist with those from Fe.

* This indicates contributions from plasmas with very different temperatures.

* At least two plasma components are necessary to explain the spectrum.
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Region 1 (590 ks) fitted with power law + Gaussian lines
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Fitting the GRXE in the hard X-ray band

 Single-temperature thermal model gave the best fit at kT=15.7 (13.7-18.4) keV.

- The IP spectral model well reproduced the data with Mwp=0.66 (0.59-0.75) Msun.
- This could be interpreted as a representative WD mass of IPs in the Galaxy.
(c.f. ~0.5 Msun by Krivonos+07 with INTEGRAL data)
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Broad-band GRXE spectral fitting
* Hard X-ray spectral fit with the CV model extrapolated below 10 keV.

* Another lower temperature component is required.
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Broad-band GRXE spectral fitting

* Hard X-ray spectral fit with the CV model extrapolated below 10 keV.
* Another lower temperature component is required.

'Single-k'I" thermal (a|'oec)'

kT = 1.52+0.04 keV
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The broadband GRXE spectrum is decomposed into two components for the first time.
low-kT component 1-1.5 keV — typical coronal active star

— reproduce by




Summary and conclusion

» Constructed X-ray spectral model of magnetic CV.
- Validity confirmed by analyses of 17 nearby CVs observed by Suzaku.
- Broadband GRXE spectrum was measured with the highest precision.

« Spectral fitting suggested two distinctive components which correspond
to properties of coronal active stars and

« Our spectroscopy result also supports the “Point Source Scenario” as
the origin of the GRXE.
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