Investigating the cosmic evolution of the black hole mass - bulge luminosity relation

Daeseong Park (NAOC-based 2014 EACOA fellow)

with

Jong-Hak Woo, Vardha N. Bennert, Tommaso Treu, Matthew W. Auger, Matthew A. Malkan

2015/2/10 (Tue) 11:00-11:15am

EAYAM 2015 @ ASIAA, Taipei
Contents

1 Introduction

2 Measurements

 1 Black hole mass (M_{BH}) estimates using Keck spectra
 2 Bulge luminosity (L_{bul}) estimates using HST images

3 Analysis & Results

 1 $M_{BH} - L_{bul}$ relation at high-redshift universe
 2 constraining the cosmic evolution of the relation

4 Summary & Conclusion
1. Introduction

– The BH-galaxy correlations in local universe –

- $M_{BH} - \sigma_*$ relation

This is indeed surprising! given the huge difference in scales between BH and galaxy,

- BH accretion disk
 - BH sphere of influence
- bulge size

$M_{BH}/M_{host} \sim 0.2\%$

⇒ The Co-Evolution of SMBHs and their host-galaxies

Daeseong Park (NAOC)
EAYAM 2015 in Taiwan
Feb. 10, 2015

\[\sigma_{int} \sim 0.3 \text{ dex} \]
1. Introduction

– The BH-galaxy correlations in local universe –

- $M_{BH} - \sigma_*$ relation

- $M_{BH} - L_{bulge}$ relation
 Magorrian et al. (1998); McLure & Dunlop (2002)

This is indeed surprising! given the huge difference in scales between BH and galaxy,
- BH accretion disk
 \sim AU scale
- BH sphere of influence
 \sim pc scale
- bulge size
 \sim kpc scale
- $M_{BH}/M_{host} \sim 0.2\%$

\Rightarrow paradigm shift on galaxy formation and evolution theory

The Co-Evolution of SMBHs and their host-galaxies

Daeseong Park (NAOC)
1. Introduction

– The BH-galaxy correlations in local universe –

- $M_{\text{BH}} - \sigma_*$ relation

- $M_{\text{BH}} - L_{\text{bulge}}$ relation
 Magorrian et al. (1998); McLure & Dunlop (2002)

This is indeed surprising!

given the huge difference in scales between BH and galaxy,
BH accretion disk \sim AU scale
BH sphere of influence \sim pc scale
bulge size \sim kpc scale

$M_{\text{BH}}/M_{\text{host}} \sim 0.2\%$

*paradigm shift on galaxy formation and evolution theory

\Rightarrow The Co-Evolution of SMBHs and their host-galaxies
1. Introduction

– The BH-galaxy correlations in local universe –

- $M_{BH} - \sigma_\star$ relation

- $M_{BH} - L_{bulge}$ relation
 Magorrian et al. (1998); McLure & Dunlop (2002)
 Marcon & Hunt (2003)

This is indeed surprising! given the huge difference in scales between BH and galaxy,

- BH accretion disk \sim AU scale
- BH sphere of influence \sim pc scale
- bulge size \sim kpc scale
- $M_{BH}/M_{host} \sim 0.2\%$
1. Introduction

– The BH-galaxy correlations in local universe –

- $M_{\text{BH}} - \sigma_*$ relation

- $M_{\text{BH}} - L_{\text{bulge}}$ relation
 Magorrian et al. (1998); McLure & Dunlop (2002)

* paradigm shift on galaxy formation and evolution theory *

⇒ The Co-Evolution of SMBHs and their host-galaxies

bulge size \sim kpc scale
$M_{\text{BH}}/M_{\text{host}} \sim 0.2\%$
1. Introduction

The BH-galaxy co-evolution

- Fundamental Questions:

Q.1 What is the **physical origin** of the tight correlations?

Q.2 Do these correlations **evolve** with cosmic time?
 (⇔ which comes first? BH? galaxy? or they evolve concurrently?)
1. Introduction

Current understanding of the co-evolution from previous studies

In the standard cosmological scenario,

- bulges grow by galaxy mergers
- black holes grow by accreting surrounding matter
Current understanding of the co-evolution from previous studies

In the standard cosmological scenario,
- bulges grow by galaxy mergers
- black holes grow by accreting surrounding matter
- physically coupled process
- time offset and/or different timescales
1. Introduction

Current understanding of the co-evolution from previous studies

In the standard cosmological scenario,
- bulges grow by galaxy mergers
- black holes grow by accreting surrounding matter

? physically coupled process
? time offset and/or different timescales

1. investigating the origin from theoretical modelings
- AGN feedback mechanism
 (e.g., Silk & Rees 98; Fabian 99; Monaco+00; Kauffmann & Haehnelt 00; Wyithe & Loeb 03; Volonteri+03; Granato+04; Di Matteo+05; Springel+05; Croton+06; Bower+06; Robertson+06; Malbon+07; Colberg & Di Matteo 08; Somerville+08; Hopkins+06,08,09; Ciotti+09; Booth & Schaye 09; Johansson+09; Shankar+09)

- random merging events in hierarchical assembly without a physical coupling
 (e.g., Peng 07; Gaskell 10; Hirschmann+10; Jahnke & Maccio 11)
1. Introduction

Current understanding of the co-evolution from previous studies

In the standard cosmological scenario,
- bulges grow by galaxy mergers
- black holes grow by accreting surrounding matter

? physically coupled process
? time offset and/or different timescales

1. investigating the origin from theoretical modelings
- AGN feedback mechanism
 (e.g., Silk & Rees 98; Fabian 99; Monaco+00; Kauffmann & Haehnelt 00; Wyithe & Loeb 03; Volonteri+03; Granato+04; Di Matteo+05; Springel+05; Croton+06; Bower+06; Robertson+06; Malbon+07; Colberg & Di Matteo 08; Somerville+08; Hopkins+06,08,09; Ciotti+09; Booth & Schaye 09; Johansson+09; Shankar+09)

- random merging events in hierarchical assembly without a physical coupling
 (e.g., Peng 07; Gaskell 10; Hirschmann+10; Jahnke & Maccio 11)

⇒ But, it is still unclear because the models rely on many ad hoc assumptions and approximations
1. Introduction

Current understanding of the co-evolution from previous studies

In the standard cosmological scenario,

- bulges grow by galaxy mergers
- black holes grow by accreting surrounding matter

? physically coupled process
? time offset and/or different timescales

2. investigating the evolution from observational approaches

- No evolution (synchronized growth)
 (e.g., Shields+03; Shen+08; Schulze+11; Schramm+13; Salviander+13; Schulze+14; Salviander+14)

- BH grows first
 (e.g., Treu+04,07; McLure+06; Shields+06; Peng+06; Woo+06,08; Salviander+07; Jahnke+09; Decarli+10; Merloni+10; Bennert+10,11; Cisternas+11; Hiner+12; Canalizo+12; Bongiorno+14)

- Galaxy grows first
 (e.g., Alexander+08; Shapiro+09; Urrutia+12; Busch+14)
1. Introduction

Current understanding of the co-evolution from previous studies

In the standard cosmological scenario,
- bulges grow by galaxy mergers
- black holes grow by accreting surrounding matter
? physically coupled process
? time offset and/or different timescales

2. investigating the evolution from observational approaches

- No evolution (synchronized growth)
 (e.g., Shields+03; Shen+08; Schulze+11; Schramm+13; Salviander+13; Schulze+14; Salviander+14)

- BH grows first
 (e.g., Treu+04,07; McLure+06; Shields+06; Peng+06; Woo+06,08; Salviander+07; Jahnke+09; Decarli+10; Merloni+10; Bennert+10,11; Cisternas+11; Hiner+12; Canalizo+12; Bongiorno+14)

- Galaxy grows first
 (e.g., Alexander+08; Shapiro+09; Urrutia+12; Busch+14)

⇒ But, these results are subject to sample selection biases and large measurement errors
1. Introduction

Given the uncertain and tentative understanding for the physical origin and cosmic evolution, (more and accurate) direct observational constraints on how black holes and galaxies co-evolve over cosmic time are thus necessary and will be essential inputs to better understand the physics of the black hole growth and galaxy evolution.
1. Introduction

Given the uncertain and tentative understanding for the physical origin and cosmic evolution, (more and accurate) direct observational constraints on how black holes and galaxies co-evolve over cosmic time are thus necessary and will be essential inputs to better understand the physics of the black hole growth and galaxy evolution.

Purpose of this study

Investigating the evolution of the BH-galaxy scaling relation ($M_{BH} - L_{bul}$) over cosmic time to directly mapping the BH-galaxy co-evolution.
1. Introduction

Given the uncertain and tentative understanding for the physical origin and cosmic evolution, (more and accurate) direct observational constraints on how black holes and galaxies co-evolve over cosmic time are thus necessary and will be essential inputs to better understand the physics of the black hole growth and galaxy evolution.

Purpose of this study

Investigating the evolution of the BH-galaxy scaling relation ($M_{BH} - L_{bul}$) over cosmic time to directly mapping the BH-galaxy co-evolution.

To probe the high-redshift scaling relation

One should rely on a sample of broad-line (Type 1) AGNs to obtain BH masses at high-z. However, this is subject to various measurement uncertainties and biases:

1. systematic uncertainties in SE virial BH mass estimates (Park et al. 2012a,b)
2. measurement systematics in host bulge luminosities (Kim et al. 2008a,b)
3. sample selection biases (Lauer et al. 2007; Schulze & Wisotzki 2011)
1. Introduction

Given the uncertain and tentative understanding for the physical origin and cosmic evolution, (more and accurate) direct observational constraints on how black holes and galaxies co-evolve over cosmic time are thus necessary and will be essential inputs to better understand the physics of the black hole growth and galaxy evolution.

Purpose of this study

Investigating the evolution of the BH-galaxy scaling relation ($M_{BH} - L_{bul}$) over cosmic time to directly mapping the BH-galaxy co-evolution.

To mitigate these measurement uncertainties and selection biases

- a total of 52 AGNs at moderate-redshifts (37 at $z \sim 0.36$; 15 at $z \sim 0.57$) having moderate-luminosities ($\lambda L_{5100} \sim 10^{44}$ erg s$^{-1}$)
- high-quality Keck spectra & high-resolution HST images
- uniform and consistent analysis to estimate M_{BH} and L_{bul}
- Monte Carlo simulation to take into account selection effects
2. Measurements

2.1 Estimating black hole mass (M_{BH}) by spectroscopic decomposition analysis on Keck spectra

The multi-component spectral decomposition of the Hβ region complex:
2. Measurements
2.1 Estimating black hole mass (M_{BH}) by spectroscopic decomposition analysis on Keck spectra

the multi-component spectral decomposition of the H\textsubscript{\beta} region complex:

1. continuum region model:
 - AGN power-law continuum:
 $$F_{\lambda}^{\text{PL}}(a, \beta) = a \lambda^{\beta}$$
 - AGN Fe II template:
 $$F_{\lambda}^{\text{iron}}(c, v_s, \sigma_w) = c T_{\lambda}^{Iz\text{w}1} \otimes G_{\lambda}(v_s, \sigma_w)$$
 - Host galaxy stellar templates:
 $$F_{\lambda}^{\text{host}}(k_i, v^*_s, \sigma^*_w) = \sum_{i=1}^{7} k_{i} T_{\lambda,i}^{\text{star}} \otimes G_{\lambda}(v^*_s, \sigma^*_w)$$

2. emission region model:
 - H\textsubscript{\beta} λ4861
 - [O III] $\lambda\lambda$4959, 5007
 - He II λ4686
2. Measurements
2.1 Estimating black hole mass (M_{BH}) by spectroscopic decomposition analysis on Keck spectra

the multi-component spectral decomposition of the Hβ region complex:

1. continuum region model:

The M_{BH} estimator derived from the recent calibrations of the size-luminosity relation ($R_{BLR} \propto L^{0.519}$; Bentz et al. 2009a) and the virial factor ($\log f = 0.71$; Park et al. 2012a)

$$\log \left(\frac{M_{BH}}{M_{\odot}} \right) = 7.536 + 0.519 \log \left(\frac{\lambda L_{5100}}{10^{44} \text{ erg s}^{-1}} \right) + 2 \log \left(\frac{\sigma_{H\beta}}{1000 \text{ km s}^{-1}} \right),$$

where the overall uncertainty of SE BH mass is estimated to be 0.4 dex from sources of uncertainties as follows

- 0.31 dex (virial factor; Woo et al. 2010)
- 0.2 dex (direction of regression; Park et al. 2012a)
- 0.05 dex (random error; Park et al. 2012b),
- 0.15 dex ($R - L$ relation; Bentz et al. 2009a).
2. Measurements

2.2 Estimating bulge luminosity (L_{bul}) by photometric decomposition analysis on HST images
2. Measurements

2.2 Estimating bulge luminosity \((L_{\text{bul}})\) by photometric decomposition analysis on HST images

the multi-component structural decomposition of the AGN host galaxy:

Each image is decomposed into three main structural components:

1. Central point source (AGN; stellar PSFs)
2. Host galaxy bulge component (a de Vaucouleurs profile)
3. Host galaxy disk component (an exponential profile)
2. Measurements
2.2 Estimating bulge luminosity (L_{bul}) by photometric decomposition analysis on HST images

the multi-component structural decomposition of the AGN host galaxy:

Each image is decomposed into three main structural components:

1. Central point source (AGN; stellar PSFs)
2. Host galaxy bulge component (a de Vaucouleurs profile)
3. Host galaxy disk component (an exponential profile)
2. Measurements

2.2 Estimating bulge luminosity (L_{bul}) by photometric decomposition analysis on HST images

the multi-component structural decomposition of the AGN host galaxy:

Each image is decomposed into three main structural components:

1. Central point source (AGN; stellar PSFs)
2. Host galaxy bulge component (a de Vaucouleurs profile)
3. Host galaxy disk component (an exponential profile)
2. Measurements

2.2 Estimating bulge luminosity (L_{bul}) by photometric decomposition analysis on HST images

the multi-component structural decomposition of the AGN host galaxy:

Each image is decomposed into three main structural components:

1. Central point source (AGN; stellar PSFs)
2. Host galaxy bulge component (a de Vaucouleurs profile)
3. Host galaxy disk component (an exponential profile)

Finally L_{bul} is obtained by applying extinction-, K-, E- corrections where the conservative total uncertainty of bulge luminosity estimate is estimated to be $0.2 \text{ dex} \sim 0.5 \text{ mag}$ based on the extensive simulation results with a variety of settings.
3. Analysis & Results

3.1 $M_{\text{BH}} - L_{\text{bul}}$ relation

$M_{\text{BH}} - L_{\text{bul}}$ distributions for local and distant active galaxies:

Local comparison sample
The reverberation-mapped local AGNs taken from Bennert et al. (2010)
⇒ local baseline relation:
$log (M_{\text{BH}}/M_{\odot}) = 7.89 + 0.70 \log (L_{\text{bul}}/L_{\odot})$

Sample selection
52 moderate-luminosity AGNs at moderate-redshifts, selected based on nuclear luminosity and H\text{β} broad emission line width (i.e., M_{BH} - S objects at $z \sim 0.36$ - W objects at $z \sim 0.57$ - SS objects supplementary at $z \sim 0.36$ with additional selection criterion $M_{\text{BH}} \lesssim 10^8 M_{\odot}$)

Daeseong Park (NAOC)
EAYAM 2015 in Taiwan
Feb. 10, 2015
3. Analysis & Results

3.1 $M_{\text{BH}} - L_{\text{bul}}$ relation

$M_{\text{BH}} - L_{\text{bul}}$ distributions for local and distant active galaxies:

- **Local comparison sample**
 - The reverberation-mapped local AGNs taken from Bennert et al. (2010)
 - Local baseline relation:
 \[
 \log \left(\frac{M_{\text{BH}}}{M_\odot} \right) = 7.89 + 0.70 \log \left(\frac{L_{\text{bul},V}}{10^{10} L_\odot,V} \right)
 \]

Sample selection

- 52 moderate-luminosity AGNs at moderate-redshifts, selected based on nuclear luminosity and H_β broad emission line width (i.e., M_{BH} - S objects at $z \sim 0.36$)
- 36 - W objects at $z \sim 0.36$
- 36 - SS objects supplementary at $z \sim 0.36$

Daeseong Park (NAOC)
EAYAM 2015 in Taiwan
Feb. 10, 2015
3. Analysis & Results

3.1 $M_{\text{BH}} - L_{\text{bul}}$ relation

$M_{\text{BH}} - L_{\text{bul}}$ distributions for local and distant active galaxies:

Local comparison sample

The reverberation-mapped local AGNs taken from Bennert et al. (2010)

⇒ local baseline relation:

$$\log \left(\frac{M_{\text{BH}}}{M_\odot} \right) = 7.89 + 0.70 \log \left(\frac{L_{\text{bul}, V}}{10^{10} L_\odot, V} \right)$$

Sample selection

52 moderate-luminosity AGNs at moderate-redshifts, selected based on nuclear luminosity and Hβ broad emission line width (i.e., M_{BH})

- S objects at $z \sim 0.36$
- W objects at $z \sim 0.57$
- SS objects supplementary at $z \sim 0.36$ with additional selection criterion $M_{\text{BH}} \lesssim 10^8 M_\odot$
3. Analysis & Results

3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

Redshift distribution of the offset in $\log M_{BH}$ for a given L_{bul} wrt the local baseline:

\[z \sim 0.08 \text{ (19)} \]
\[z \sim 0.36 \text{ (37)} \]
\[z \sim 0.57 \text{ (15)} \]
3. Analysis & Results

3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

Redshift distribution of the offset in $\log M_{BH}$ for a given L_{bul} wrt the local baseline:

Modeling the redshift evolution with a form of

$$\Delta \log M_{BH} = \gamma \log(1 + z),$$

we find $\gamma = +1.3 \pm 0.4$, without taking into account selection effects.
3. Analysis & Results

3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

Redshift distribution of the offset in $\log M_{BH}$ for a given L_{bul} wrt the local baseline:

$$\Delta \log M_{BH} (\text{vs } L_{bul}, V)$$

- $z \sim 0.08$ (19)
- $z \sim 0.36$ (37)
- $z \sim 0.57$ (15)

★ Selection Effects ★

(1) **Lauer bias** ⇒ mimicking positive offset

(2) **Active fraction bias** ⇒ mimicking negative offset

(3) $M_{BH} (L_{bul})$ **measurement-error induced bias** ⇒ mimicking positive (negative) offset

Daeseong Park (NAOC)
EAYAM 2015 in Taiwan
Feb. 10, 2015 10 / 13
3. Analysis & Results
3.2 constraining the evolution of the $M_{\text{BH}} - L_{\text{bul}}$ relation

Monte Carlo simulation to incorporate the effects of observational selection processes:

1. generate simulated sample:
 - combining the local active BH mass function (Schulze & Wisotzki 2010) and the local baseline $M_{\text{BH}} - L_{\text{bul}}$ relation (Bennert et al. 2010)
 ⇒ full joint distribution of M_{BH} and L_{bul}
 - add Gaussian random errors on both axes
3. Analysis & Results
3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

Monte Carlo simulation to incorporate the effects of observational selection processes:

1. generate simulated sample:
 - combining the local active BH mass function (Schulze & Wisotzki 2010) and the local baseline $M_{BH} - L_{bul}$ relation (Bennert et al. 2010)
 ⇒ full joint distribution of M_{BH} and L_{bul}
 - add Gaussian random errors on both axes

2. model the observational selection on $\log M_{BH}$:
 - applying simple hard threshold (upper and lower limits) from the observed $\log M_{BH}$ distribution to the simulated sample

Final evolution slope constrained with proper accounting for selection effects:
$\gamma = +1.8 \pm 0.7$
3. Analysis & Results
3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

Monte Carlo simulation to incorporate the effects of observational selection processes:

1. generate simulated sample:
 - combining the local active BH mass function (Schulze & Wisotzki 2010) and the local baseline $M_{BH} - L_{bul}$ relation (Bennert et al. 2010)
 ⇒ full joint distribution of M_{BH} and L_{bul}
 - add Gaussian random errors on both axes

2. model the observational selection on $\log M_{BH}$:
 - applying simple hard threshold (upper and lower limits) from the observed $\log M_{BH}$ distribution to the simulated sample

3. compute likelihood on grid of input γ and σ_{int}:
 $\ln L(\gamma, \sigma_{int}) = \sum_{i=1}^{N_{obs}} \ln P_i(\gamma, \sigma_{int})$
 - making the probability distribution of black hole masses from the simulated sample which have the corresponding bulge luminosity within the measurement uncertainty

Final evolution slope constrained with proper accounting for selection effects:
$\gamma = +1.8 \pm 0.7$
3. Analysis & Results

3.2 Constraining the evolution of the $M_{\text{BH}} - L_{\text{bul}}$ relation

Monte Carlo simulation to incorporate the effects of observational selection processes:

1. Generate simulated sample:
 - Combining the local active BH mass function (Schulze & Wisotzki 2010) and the local baseline $M_{\text{BH}} - L_{\text{bul}}$ relation (Bennert et al. 2010)
 ⇒ full joint distribution of M_{BH} and L_{bul}
 - Add Gaussian random errors on both axes

2. Model the observational selection on $\log M_{\text{BH}}$:
 - Applying simple hard threshold (upper and lower limits) from the observed $\log M_{\text{BH}}$ distribution to the simulated sample

3. Compute likelihood on grid of input γ and σ_{int}:
 \[
 \ln L(\gamma, \sigma_{\text{int}}) = \sum_{i=1}^{N_{\text{obs}}} \ln P_i(\gamma, \sigma_{\text{int}})
 \]
 - Making the probability distribution of black hole masses from the simulated sample which have the corresponding bulge luminosity within the measurement uncertainty

4. Evaluate posterior distribution with uniform and log-normal priors for σ_{int}:
 - Find best-fit values ($\gamma, \sigma_{\text{int}}$) at maximum of marginalized posterior with 68% confidence interval

Final evolution slope constrained with proper accounting for selection effects:

$\gamma = +1.8 \pm 0.7$
3. Analysis & Results

3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

Monte Carlo simulation to incorporate the effects of observational selection processes:

1. generate simulated sample:
 - combining the local active BH mass function (Schulze & Wisotzki 2010) and the local baseline $M_{BH} - L_{bul}$ relation (Bennert et al. 2010)
 ⇒ full joint distribution of M_{BH} and L_{bul}
 - add Gaussian random errors on both axes

2. model the observational selection:
 - applying simple hard thresholds (upper and lower limits) from the observed $\log M_{BH}$ distribution to the simulated sample

3. compute likelihood on grid of input γ and σ_{int}:
 \[
 \ln L(\gamma, \sigma_{int}) = \sum_{i=1}^{N_{obs}} \ln P_i(\gamma, \sigma_{int})
 \]
 - making the probability distribution of black hole masses from the simulated sample which have the corresponding bulge luminosity within the measurement uncertainty

4. evaluate posterior distribution with uniform and log-normal priors for σ_{int}:
 - find best-fit values (γ, σ_{int}) at maximum of marginalized posterior with 68% confidence interval

Final evolution slope constrained with proper accounting for selection effects:
$\gamma = +1.8^{+0.7}_{-0.7}$

Daeseong Park (NAOC)
EAYAM 2015 in Taiwan
Feb. 10, 2015
3. Analysis & Results

3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

Monte Carlo simulation to incorporate the effects of observational selection processes:

1. generate simulated sample:
 - combining the local active BH mass function (Schulze & Wisotzki 2010) and the local $M_{BH} - L_{bul}$ relation (Bennert et al. 2010)
 - add Gaussian random errors on both axes

2. model the observational selection:
 - applying simple hard thresholds (upper and lower limits) from the observed $\log M_{BH}$ distribution to the simulated sample

3. compute likelihood on grid of input γ and σ_{int}:
 \[
 \ln L(\gamma, \sigma_{int}) = \sum_{i=1}^{N_{obs}} \ln P_i(\gamma, \sigma_{int})
 \]
 - making the probability distribution of black hole masses from the simulated sample that have the corresponding bulge luminosity within the measurement uncertainty

4. evaluate posterior distribution with log-normal priors for σ_{int}:
 - find best-fit values (γ, σ_{int}) at maximum of marginalized posterior with 68% confidence interval

Final evolution slope constrained with proper accounting for selection effects:

$\gamma = +1.8 \pm 0.7$
3. Analysis & Results

3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

- Monte Carlo simulation to incorporate the effects of observational selection processes:

1.
 - generate simulated sample:
 - combining the local active BH mass function (Schulze & Wisotzki 2010) and the local baseline $M_{BH} - L_{bul}$ relation (Bennert et al. 2010)
 - full joint distribution of M_{BH} and L_{bul}
 - add Gaussian random errors on both axes

2.
 - model the observational selection:
 - applying simple hard thresholds (upper and lower limits) from the observed log M_{BH} distribution to the simulated sample

3.
 - compute likelihood on grid of input γ and σ_{int}:
 $\ln L(\gamma, \sigma_{int}) = \sum_{i=1}^{N_{obs}} \ln P_i(\gamma, \sigma_{int})$
 - making the probability distribution of black hole masses from the simulated sample which have the corresponding bulge luminosity within the measurement uncertainty

4.
 - evaluate posterior distribution with uniform and log-normal priors for σ_{int}:
 - find best-fit values (γ, σ_{int}) at maximum of marginalized posterior with 68% confidence interval

Final evolution slope constrained with proper accounting for selection effects:

$\gamma = +1.8 \pm 0.7$
3. Analysis & Results

3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

★ selection-bias corrected evolution:

$M_{BH}/L_{bul} \propto (1 + z)^{1.8\pm0.7}$
3. Analysis & Results

3.2 constraining the evolution of the $M_{\text{BH}} - L_{\text{bul}}$ relation

★ selection-bias corrected evolution:

- $z \sim 0.08$ (19)
- $z \sim 0.36$ (37)
- $z \sim 0.57$ (15)

$\Delta \log M_{\text{BH}} (\text{vs } L_{\text{bul}}, V)$

$z \sim 0.08$ (19)
$z \sim 0.36$ (37)
$z \sim 0.57$ (15)

$M_{\text{BH}}/L_{\text{bul}} \propto (1 + z)^{1.8\pm0.7}$

overall positive evolutionary trend:

$M_{\text{BH}}/L_{\text{bul}} \propto (1 + z)^{1.8\pm0.7}$

bulge luminosity has to increase by 0.24 dex and 0.35 dex by today from $z \sim 0.36$ and $z \sim 0.57$

\Rightarrow substantial bulge growth without significant BH growth
3. Analysis & Results

3.2 constraining the evolution of the $M_{BH} - L_{bul}$ relation

★ selection-bias corrected evolution:

overall positive evolutionary trend:

$$\frac{M_{BH}}{L_{bul}} \propto (1 + z)^{1.8 \pm 0.7}$$

bulge luminosity has to increase by 0.24 dex and 0.35 dex by today from $z \sim 0.36$ and $z \sim 0.57$

\Rightarrow substantial bulge growth without significant BH growth

bulge growth mechanisms suggested in the literature:

by redistributing stars in a disk to a bulge

1. **major merging** with a disk-dominated system containing no or negligible BH (Croton 2006)
 \Rightarrow bulge can grow more efficiently than BH by disruption of stellar disk

2. secular evolution driven by **disk instability** and/or **minor merging** (Parry et al. 2009)
We investigated the cosmic evolution of the $M_{\text{BH}} - L_{\text{bul}}$ relation:

Sample: 52 moderate-luminosity AGNs at $z \sim 0.36$ and $z \sim 0.57$.

Data: high-quality Keck spectra and high-resolution HST images.

Method: multi-component spectral and structural decomposition techniques.

Results:
1) Black hole masses and bulge luminosities are measured uniformly and consistently.
2) Comparing our sample to the local $M_{\text{BH}} - L_{\text{bul}}$ relation as evolutionary end-point, we find that black holes at distant universe reside in smaller bulges than today.
3) Performing the Monte Carlo simulation designed to account for selection effects, we constrain the positive evolutionary trend in the form of $M_{\text{BH}} / L_{\text{bul}} \propto (1 + z)^{1.8 \pm 0.7}$.

Conclusion: we find the observational evidence that black holes grow first and then their host galaxies catch up in the context of the co-evolution of black holes and galaxies.

But, there is still large scatter with limited dynamic ranges. And, for now, we cannot exclude another possibility that the observed evolution is originated from increased intrinsic scatter at higher-z.

⇒ need much more and uniformly (better) selected samples with wider dynamic ranges.
4. Summary & Conclusion

We investigated the cosmic evolution of the $M_{\text{BH}} - L_{\text{bul}}$ relation:

- **Sample**: 52 moderate-luminosity AGNs at $z \sim 0.36$ and $z \sim 0.57$
- **Data**: high-quality Keck spectra and high-resolution HST images
- **Method**: multi-component spectral and structural decomposition techniques
- **Results**:
 1) Black hole masses and bulge luminosities are measured uniformly and consistently
 2) Comparing our sample to the local $M_{\text{BH}} - L_{\text{bul}}$ relation as evolutionary end-point, we find that **black holes at distant universe reside in smaller bulges than today**.
 3) Performing the Monte Carlo simulation designed to account for selection effects, we constrain the **positive evolutionary trend** in the form of $M_{\text{BH}}/L_{\text{bul}} \propto (1 + z)^{1.8\pm0.7}$
Summary & Conclusion

We investigated the cosmic evolution of the $M_{\text{BH}} - L_{\text{bul}}$ relation:

- **Sample**: 52 moderate-luminosity AGNs at $z \sim 0.36$ and $z \sim 0.57$

- **Data**: high-quality Keck spectra and high-resolution HST images

- **Method**: multi-component spectral and structural decomposition techniques

- **Results**:
 1. Black hole masses and bulge luminosities are measured uniformly and consistently
 2. Comparing our sample to the local $M_{\text{BH}} - L_{\text{bul}}$ relation as evolutionary end-point, we find that **black holes at distant universe reside in smaller bulges than today**.
 3. Performing the Monte Carlo simulation designed to account for selection effects, we constrain the **positive evolutionary trend** in the form of $M_{\text{BH}}/L_{\text{bul}} \propto (1 + z)^{1.8 \pm 0.7}$

- **Conclusion**
 - we find the observational evidence that **black holes grow first and then their host galaxies catch up** in the context of the co-evolution of black holes and galaxies.
4. Summary & Conclusion

We investigated the cosmic evolution of the $M_{\text{BH}} - L_{\text{bul}}$ relation:

- **Sample**: 52 moderate-luminosity AGNs at $z \sim 0.36$ and $z \sim 0.57$
- **Data**: high-quality Keck spectra and high-resolution HST images
- **Method**: multi-component spectral and structural decomposition techniques
- **Results**:
 1) Black hole masses and bulge luminosities are measured uniformly and consistently
 2) Comparing our sample to the local $M_{\text{BH}} - L_{\text{bul}}$ relation as evolutionary end-point, we find that **black holes at distant universe reside in smaller bulges than today**.
 3) Performing the Monte Carlo simulation designed to account for selection effects, we constrain the **positive evolutionary trend** in the form of $M_{\text{BH}}/L_{\text{bul}} \propto (1 + z)^{1.8 \pm 0.7}$

- **Conclusion**
 ⇒ we find the observational evidence that **black holes grow first and then their host galaxies catch up** in the context of the co-evolution of black holes and galaxies.

But, there is still large scatter with limited dynamic ranges. And, for now, we cannot exclude another possibility that the observed evolution is originated from increased intrinsic scatter at higher-z.

⇒ need much more and uniformly (better) selected samples with wider dynamic ranges
Thank you~ 😊

Please see Park et al. 2015, ApJ, 799, 164 for details with the series of our previous papers:
Morphological type

$\Delta \log M_{BH} \ (vs \ L_{bul, V})$

Ellipticals (18) Spirals (18) Merger/Interaction (16)

with a bar component

$\Delta \log M_{BH} \ (vs \ L_{bul, V})$

Ellipticals (18) Spirals (18) Merger/Interaction (16)

Morphological type