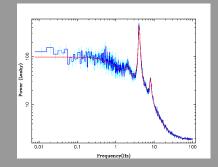


Characterizing the Intermittency of the 4 Hz Quasi-periodic Oscillation in XTE J1550-564 via Hilbert-Huang Transform

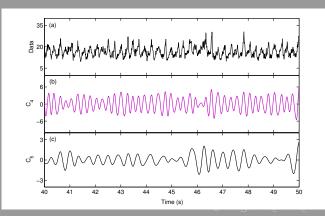
Yi-Hao Su, Yi Chou, Chin-Ping Hu, Ting-Chang Yang

Institute of Astronomy, National Central University, Taiwan

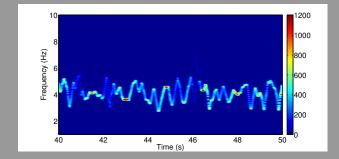

yhsu@astro.ncu.edu.tw

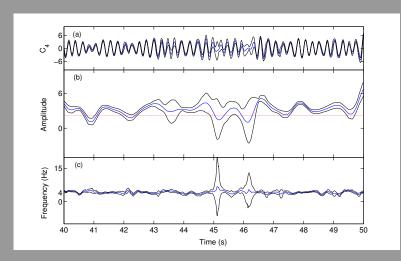
February 10, 2015

Quasi-periodic Oscillation (QPO)

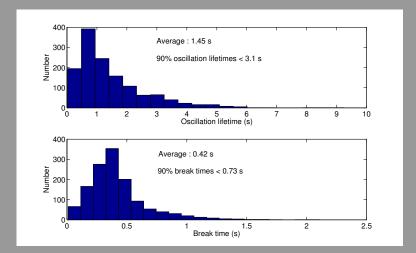

- Broad peak
- Non-stationary period
- A strong power, 4 Hz
 QPO in XTE J1550-564
 (Remillard et al. 2002)

First Step of Hilbert-Huang Transform (HHT)

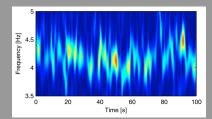

- Huang et al. (1998)
- Non-stationary and non-linear time series
- First step of HHT: Empirical mode decomposition (EMD)
- Intrinsic mode functions (IMFs)


Second Step of Hilbert-Huang Transform (HHT)

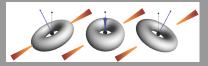
- $Y_4(t) = rac{1}{\pi} P \int_{-\infty}^{\infty} rac{X_4(t')}{t-t'} dt' \leftarrow \mathsf{Hilbert transform}$
- $X_4(t) + iY_4(t) = \mathsf{a}_4(t) e^{i heta_4(t)} \leftarrow \mathsf{Instantaneous}$ amplitude
- $f_4(t) = \frac{1}{2\pi} \frac{d\theta_4(t)}{dt} \leftarrow$ Instantaneous frequency



Confidence Limits


Lifetimes

| ロ ト 《 昂 ト 《 臣 ト 《 臣) の Q () |



Contributions of Our Research

Wavelet analysis

Lense-Thirring precession

(Ingram & Done 2009)

(Lachowicz & Done 2010)

Summary

Method

We employed HHT to study the detailed time-frequency variation of the 4 Hz QPO in XTE J1550-564.

Result

We have demonstrated that the \sim 4 Hz peak is broadened by a series of intermittent, frequency-changing oscillations with lifetime of a few seconds.

Contributions

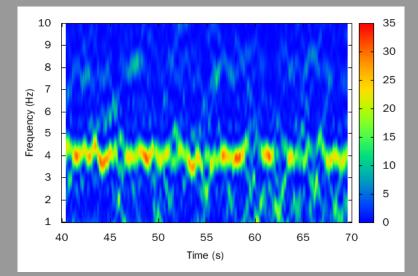
Our results are significantly improve the time-frequency resolution for tracking the evolution of the 4 Hz QPO.

Our findings not only consistent with previous research but also fit nicely into the Lense-Thirring precession QPO model.

Future Works

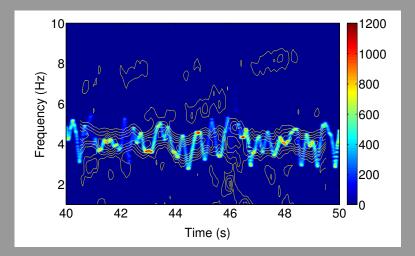
Main project Extend this work to the remain

QPOs in XTE J1550-564

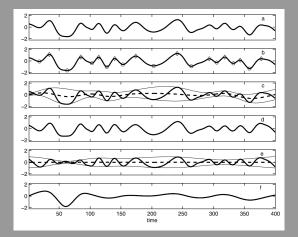

Side project/Collaboration Non-stationary, evenly spaced time series

Observation Number	Date	MJDa	Type	QPO v ^b (Hz)
29	1998 Sep 29	51085.27	С	4.13
				8.3
				2.1
30	1998 Sep 29	51085.92	С	2.89
				5.8
				1.4
31	1998 Sep 29	51085.99	С	3.09
				6.1
				1.5
32	1998 Sep 30	51086.89	С	3.51
				7.0
				1.8
33	1998 Oct 01	51087.72	С	3.44
				6.9
				1.7
3/	1008 Oct 02	51088.01	<i>C</i>	3.21

(Remillard et al. 2002)



Dynamic Power Spectrum



Hilbert Spectrum & Dynamic Power Spectrum

Sifting Process of Empirical Mode Decomposition

(Huang & Wu 2008)

Comparison between Analysis Methods

	Fourier	Wavelet	HHT
Basis	a priori	a priori	a posteriori adaptive
Frequency	convolution over global domain, uncertainty	convolution over global domain, uncertainty	differentiation over local domain, certainty
Presentation	energy in frequency space	energy in time-frequency space	energy in time-frequency space
Nonlinearity	no	no	yes
Nonstationarity	no	yes	yes
Feature extraction	no	discrete, no; continuous, yes	yes
Theoretical base	complete mathematical theory	complete mathematical theory	empirical

TABLE 1. Comparison Between Fourier, Wavelet, and HHT Analysis

(Huang & Wu 2008)