Modeling the Extreme X-ray Spectrum of IRAS 13224-3809

Chia-Ying Chiang Wayne State University

Dominic Walton, Andy Fabian, Daniel Wilkins, Luigi Gallo

February 10th, 2015, ASIAA

Seyfert Galaxies

- most AGN display narrow optical lines
- Type 1: also display strong broad optical emission lines
- Type 2: broad component obscured by the dusty torus (unification model, Antonucci 1993)

Geometry

 $\text{Log }\nu$

Geometry

 $\text{Log }\nu$

Reflected Spectrum

Reynolds (1993)

Relativistic Effects

Broad Fe Ka Line

 Broad iron line first discovered in ASCA observation of Type I AGN MCG-6-30-15

- Found in both AGN and stellar-mass black holes
- Line profile can be used to measure the black hole spin

AGN X-ray Spectrum

IRAS13224-3809

500 ks *XMM-Newton* observation in 2011, Fabian et al. (2013)

- * strong Fe K & Fe L lines,
- * sharp edge at ~8 keV
- large variability
- small central black holes, high accreting rates
- high iron abundance

Time-averaged Spectra

Galactic absorption * (powerlaw + blackbody + blurred reflection)

Chiang et al. (2014)

Model

Galactic absorption * (powerlaw + blackbody + blurred reflection)

Chiang et al. (2014)

Emissivity Profile

- illumination pattern of accretion disc
- reveals the reflected power per unit area

 $\varepsilon(r) = r^{-q}$

* q = 3 if relativistic effects are not included

Emissivity Profile

source at $h = 10 R_G$, Wilkins & Fabian (2012)

Time-resolved Spectra

Chiang et al. (2014)

Emissivity Evolution

Lags from different bands

Summary

- * Relativistic reflection model can explain the X-ray spectra of most AGN, including extreme sources.
- source geometry can be probed by combining results of timing and spectral analyses

Thank you very much for your attention!

Powerlaw vs. Reflection

Chiang et al. (2014)

Powerlaw vs. Reflection

Chiang et al. (2014)