Black Holes，Big and Small Impact on Galaxy Formation

Luis C．Ho（何子山）
Kavli Institute for Astronomy and Astrophysics（KIAA） Peking University

Miyoshi et al. (1995)
Herrnstein et al. (2005)

Barth, Ho et al. (2001)

The "Nuker" Team

Correlation Between Black Hole Mass and Bulge Mass

Gebhardt et al. (2000); Ferrarese \& Merritt (2000); Gültekin et al. (2009)

bulge velocity dispersion

$\mathrm{T}=0 \mathrm{Myr}$

Gaiblier et al. (2012)

Crotton et al. (2006)

Schawinski et al. (2010)

Standard "Paradigm"

OAll bulges contain BHs
$\bigcirc M_{\bullet} \sim M_{\text {bulge }}^{1.0} \quad\left\langle M_{\bullet} / M_{\text {bulge }}\right\rangle \sim 0.1 \%-0.2 \%$
$\bigcirc M_{\bullet} \propto \sigma^{4}$
$\bigcirc M_{\bullet}-\sigma$ relation tighter than $M_{\bullet}-M_{\text {bulge }}$ relation
No strong dependence on galaxy mass or type
\bigcirc Mild to strong evolution with redshift
\bigcirc AGN feedback engineers BH-host correlations

Recent Developments

Kormendy \& Ho (2013, ARA\&A):
Coevolution (or Not) of Supermassive Black Holes and Galaxies

Table 2 Supermassive black holes detected dynamically in 45 elliptical galaxies (December 2012)

Table 3 Supermassive black holes detected dynamically in spiral and S0 galaxies galaxies (21 with classical bulges; 22 with pseudobulges; December 2012)

Object (1)	Type (2)	Distance (Mpc) (3)	K_{s} (4)	$M_{K s T}$ ${ }_{(5)}$	$M_{K s, \text { bulge }}$ (6)	$M_{K s, \text { disk }}$ (7)	B / T (8)	$P B / T$ ${ }^{(9)}$	$\begin{gathered} M_{V T} \\ (10) \end{gathered}$	$M_{V, \text { bulge }}$ (11)	$M_{V, \text { disk }}$ (12)	$\left(V-K_{s}\right)_{0}$ (13)	$(B-V)_{0}$ (14)	$\begin{gathered} \log M_{\text {bulge }} \\ \left(M_{\odot}\right) \\ (15) \end{gathered}$	$\begin{gathered} M_{\bullet}\left(\text { low } M_{\bullet}-\text { high } M_{\bullet}\right) \\ \left(M_{\odot}\right) \\ (16) \end{gathered}$	$\begin{gathered} \sigma_{e} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \\ (17) \end{gathered}$	$\begin{gathered} V_{\text {circ }} \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \\ (18) \end{gathered}$	Flags M M_{\bullet} (19)	Source (20)
M 31	Sb	0.7748	0.573	-23.89	-22.62	-23.85	0.31	0.0	-21.14	-19.64	-20.83	2.746	0.865	10.35 ± 0.09	$1.43(1.12-2.34) \times 10^{8}$	169 ± 8	250 ± 20	10	Bender + 2005
M 81	Sb	3.6048	3.831	-23.98	-22.81	-23.53	0.34	0.0	-21.06	-19.89	-20.61	2.913	0.879	10.42 ± 0.09	$6.5(5 .-9.) \times 10^{7}$	143 ± 7	240 ± 10	1,20	see notes
NGC 52	S0	24.222	7.163	-24.78	-24.69	-22.04	0.92	0.0	-21.86	-21.77	-19.12	2.923	0.977	11.26 ± 0.09	$8.67(8.21-9.61) \times 10^{8}$	247 ± 12		10	Krajnović + 2009
NGC 821	S0	23.442	7.715	-24.17	-24.11	-20.92	0.95	0.0	-21.19	-21.13	-17.94	2.980	0.893	10.98 ± 0.09	$1.65(0.92-2.39) \times 10^{8}$	209 ± 10		11	Schulze + 2011
NGC 1023	SB0	10.812	6.238	-23.95	-22.93	-23.41	0.39	0.0	-20.99	-19.96	-20.45	2.964	0.946	10.53 ± 0.09	$4.13(3.71-4.56) \times 10^{7}$	205 ± 10	251 ± 15	10	Bower + 2001
NGC 1194	S0/	57.989	9.758	-24.08	-23.33	-23.33	0.5	0.0	-21.16	-20.40	-20.40	2.925	0.893	10.64 ± 0.09	$7.08(6.76-7.41) \times 10^{7}$	148 ± 24	203 ± 16	30	Kuo + 2011
NGC 1277	S0/	73. 10	9.813	-24.63	-23.98	-23.76	0.55	0.0	-21.31	-20.67	-20.45	3.313	0.985	11.00 ± 0.09	$1.7(1.4-2.0) \times 10^{10}$	333 ± 17		11	van den Bosch +2012
NGC 2549	S0/	12.702	8.046	-22.49	-20.99	-22.18	0.25	0.0	-19.55	-18.05	-19.24	2.942	0.912	9.71 ± 0.09	$1.45(0.31-1.65) \times 10^{7}$	145 ± 7		10	Krajnović + 2009
NGC 3115	S0/	9.542	5.883	-24.03	-23.91	-21.53	0.90	0.0	-21.13	-21.01	-18.63	2.901	0.928	10.92 ± 0.09	$8.97(6.20-9.54) \times 10^{8}$	230 ± 11	315 ± 20	11	Emsellem +1999
NGC 3245	S0	21.382	7.862	-23.80	-23.41	-22.49	0.70	0.0	-20.88	-20.50	-19.58	2.914	0.888	10.69 ± 0.09	$2.39(1.63-2.66) \times 10^{8}$	205 ± 10		20	Barth + 2001
NGC 3585	S0	20.512	6.703	-24.88	-24.80	-21.99	0.93	0.0	-21.93	-21.85	-19.04	2.951	0.913	11.26 ± 0.09	$3.29(2.71-4.74) \times 10^{8}$	213 ± 11	280 ± 20	10	Gultekin +200
NGC 3998	S0	14.302	7.365	-23.42	-23.24	-21.36	0.85	0.0	-20.63	-20.46	-18.57	2.786	0.936	10.67 ± 0.09	$8.45(7.79-9.15) \times 10^{8}$	275 ± 7		11	Walsh +2012
NGC 3998	S0	14.302	7.365	-23.42	-23.24	-21.36	0.85	0.0	-20.63	-20.46	-18.57	2.786	0.936	10.67 ± 0.09	$2.27(1.43-3.28) \times 10^{8}$	275 ± 7		20	DeFrancesco +2006
NGC 4026	S0	13.352	7.584	-23.05	-22.51	-22.03	0.61	0.0	-20.01	-19.47	-18.99	3.043	0.900	10.33 ± 0.09	$1.80(1.45-2.40) \times 10^{8}$	180 ± 9	300 ± 20	10	Gultekin + 2009a
NGC 4258	SABbc	7.276	5.464	-23.85	-21.55	-23.71	0.12	0.0	-20.94	-18.64	-20.80	2.907	0.676	9.86 ± 0.09	$3.78(3.74-3.82) \times 10^{7}$	115 ± 10	208 ± 6	30	Section 3.3
NGC 4342	S0	22.913	9.023	-22.78	-22.40	-21.48	0.70	0.01	-19.50	-19.11	-18.19	3.287	0.932	10.31 ± 0.09	$4.53(3.05-7.18) \times 10^{8}$	225 ± 11		10	Cretton + 1999b
NGC 4526	S0/	16.442	6.473	-24.61	-24.15	-23.47	0.65	0.0	-21.44	-20.98	-20.30	3.170	0.941	11.02 ± 0.09	$4.51(3.48-5.91) \times 10^{8}$	222 ± 11	290 ± 20	40	Davis +2013
NGC 4564	So	15.942	7.937	-23.09	-22.65	-21.88	0.67	0.0	-20.06	-19.62	-18.85	3.028	0.899	10.38 ± 0.09	$8.81(6.38-11.26) \times 10^{7}$	162 ± 8		1	Schulze + 2011
NGC 4594	Sa	9.872	4.625	-25.36	-25.28	-22.55	0.925	0.01	-22.38	-22.30	-19.57	2.980	0.934	11.47 ± 0.09	$6.65(6.24-7.05) \times 10^{8}$	240 ± 12	360 ± 10	11	Jardel + 2011
NGC 4596	SB0	16.534	7.463	-23.64	-22.21	-23.29	0.27	0.0	-20.72	-19.30	-20.38	2.913	0.920	10.20 ± 0.09	$7.67(4.43-11.41) \times 10_{7}^{7}$	136 ± 6	230 ± 30	20	Sarzi +2001
NGC 7457	S0	12.532	8.179	-22.33	-20.82	-22.02	0.25	0.0	-19.45	-17.94	-19.14	2.880	0.844	9.56 ± 0.09	$0.90(0.36-1.43) \times 10^{7}$	67 ± 3	$145 \pm$	11	Schulze + 2011
Galaxy	Sb	0.00828		-23.7	-21.9	-23.5	0.0	19	-20.8	-18.9	-20.5	2.980		10.09 ± 0.10	$4.30(3.94-4.66) \times 10^{6}$	105 ± 20	220 ± 20	10	Genzel + 2010
Circinus	SABb:	2.82	4.71	-22.85	-21.55	-22.47	0.0	0.30	-19.80	-18.49	-19.41	3.052	0.410	9.63 ± 0.14	$1.14(0.94-1.34) \times 10^{6}$	79 ± 3	155 ± 5	30	Greenhill + 2003
NGC 1068	Sb	15.99	5.788	-25.23	-24.25	-24.66	0.0	0.41	-22.23	-20.92	-21.84	3.000	0.710	10.92 ± 0.10	$8.39(7.95-8.83) \times 10^{6}$	151 ± 7	283 ± 9	0	Lodato+2003, Huré+2002
NGC 1300	SBbc	21.59	7.564	-24.11	-21.71	-23.98	0.0	0.11	-21.32	-18.92	-21.19	2.791	0.653	9.84 ± 0.10	$7.55(3.89-14.75) \times 10^{7}$	88 ± 3	220 ± 10	20	Atkinson +2005
NGC 2273	SBa	29.59	8.480	-23.89	-22.07	-23.67	0.0	0.19	-20.88	-19.06	-20.66	3.007	0.827	10.08 ± 0.09	$8.61(8.15-9.07) \times 10^{6}$	125 ± 9	220 ± 6	30	Kuo + 2011
NGC 2748	Sc	23.49	8.723	-23.13	-20.56	-23.02	0.0	0.094	-20.27	-17.70	-20.16	2.862	0.707	9.41 ± 0.10	$4.44(2.62-6.20) \times 10^{7}$	115 ± 5	150 ± 10	20	Atkinson +2005
NGC 2787	SB0/a	7.452	7.263	-22.14	-21.06	-21.64	0.11	0.26	-19.10	-18.02	-18.60	3.038	0.944	9.78 ± 0.09	$4.07(3.55-4.47) \times 10^{7}$	189 ± 9	226 ± 10	20	Sarzi +2001
NGC 3227	SBa	23.752	7.639	-24.25	-21.83	-24.12	0.0	0.108	-21.55	-19.13	-21.43	2.696	0.800	9.99 ± 0.09	$2.10(0.98-2.79) \times 10^{7}$	133 ± 12	250 ± 10	10	Davies + 2006
NGC 3368	SABab	10.622	6.320	-23.99	-22.48	-23.68	0.0	0.25	-21.14	-19.63	-20.82	2.854	0.838	10.26 ± 0.09	$7.66(6.13-9.19) \times 10^{6}$	125 ± 6	204 ± 5	10	Nowak + 2010
NGC 3384	SB0	11.492	6.750	-23.65	-22.56	-23.15	0.0	0.37	-20.55	-19.46	-20.05	3.105	0.906	10.34 ± 0.09	$1.08(0.59-1.57) \times 10^{7}$	146 ± 7	160 ± 10	11	Schulze + 2011
NGC 3393	SABa	49.29	9.059	-24.45	-23.03	-24.11	0.0	0.27	-21.48	-20.05	-21.14	2.968	0.813	10.48 ± 0.09	$1.57(0.58-2.55) \times 10^{7}$	148 ± 10		30	Kondratko +2008, Huré+201
NGC 3489	SABa	11.982	7.370	-23.29	-22.15	-22.82	0.11	0.24	-20.17	-19.03	-19.70	3.120	0.815	10.11 ± 0.09	$5.94(5.11-6.78) \times 10^{6}$	113 ± 4		10	Nowak + 2010
NGC 3945	SB0	19.59	7.526	-23.93	-22.88	-23.41	0.04	0.34	-20.95	-19.90	-20.43	2.980	0.925	10.50 ± 0.09	$8.8(0.00-25.5) \times 10^{6}$	192 ± 10		10	Gültekin + 2009b
NGC 4388	SBbc	16.534	8.004	-23.10	-20.55	-22.99	0.0	0.096	-20.14	-17.60	-20.03	2.955	0.711	9.41 ± 0.10	$7.31(7.13-7.48) \times 10^{6}$	99 ± 10	200 ± 10	30	Kuo + 2011
NGC 4736	Sab	5.002	5.106	-23.39	-22.29	-22.91	0.0	0.36	-20.68	-19.58	-20.20	2.710	0.735	10.13 ± 0.10	$6.77(5.21-8.33) \times 10^{6}$	120 ± 6	181 ± 10	10	Gebhardt + 2013
NGC 4826	Sab	7.272	5.330	-23.99	-22.24	-23.75	0.0	0.20	-20.98	-19.23	-20.74	3.009	0.803	10.14 ± 0.09	$1.56(1.17-1.95) \times 10^{6}$	104 ± 3	155 ± 5	10	Gebhardt + 2013
NGC 4945	Scd	3.58	4.438	-23.38	-20.50	-23.30	0.0	0.07	-20.58	-17.70	-20.50	2.801	1.20	9.35 ± 0.12	$1.35(0.87-2.03) \times 10^{6}$	134 ± 20	174 ± 10	30	Greenhill + 1997b
NGC 6264	SBb	147.69	11.407	-24.5	-22.6	-24.3	0.0	0.17						10.36 ± 0.09	$3.08(3.04-3.12) \times 10^{7}$	158 ± 15		30	Kuo + 2011
NGC 6323	SBab	113.49	10.530	-24.80	-21.55	-24.75	0.0	0.050						9.94 ± 0.09	$1.01(1.00-1.03) \times 10^{7}$	158 ± 26		30	Kuo + 2011
NGC 7582	SBab	22.39	7.316	-24.43	-21.96	-24.31	0.0	0.103	-21.78	-19.31	-21.66	2.649	0.738	10.02 ± 0.10	$5.51(4.56-6.81) \times 10^{7}$	156 ± 19	226 ± 10	20	Wold +2006
IC 2560	SBbc	37.2	8.694	-24.19	-22.05	-24.02	0.0	0.14	-21.65	-19.51	-21.48	2.541	0.886	10.12 ± 0.09	$5.01(0.00-5.72) \times 10^{6}$	141 ± 10	196 ± 3	30	Yamauchi +2012
UGC 3789	SABab	49.9	9.510	-24.03	-22.79	-23.61	0.0	0.32	-21.13	-19.89	-20.71	2.9	0.86	10.39 ± 0.09	$9.65(8.10-11.20) \times 10^{6}$	107 ± 12	273 ± 20	30	Kuo+2011, Huré+2011

 Column 2 is the galaxy Hubble type, mostly from RC3 with a few corrections from Kormendy \& Bender (2013b). Column 3 is the assumed distance (see notes to Table 2). For our Galaxy, Circinus, NGC 4945, and UGC 3789, see supplemental notes on individual galaxies

Table 3 Supermassive black holes detected dynamically in spiral and S0 galaxies galaxies (21 with classical bulges; 22 with pseudobulges; December 2012)

Object (1)		Distanc (Mpc) (3)		$M_{K s T}$	$M_{K s, \text { bulge }}$ (6)	$M_{K s, \text { disk }}$ (7)		$P B / T$ (9)	$M_{V T}$ (10)	$M_{V, \text { bulge }}$ (11)	$M_{V, \text { disk }}$ (12)	$\left(V-K_{s}\right)_{0}$ (13)	$(B-V)_{0}$ (14)	$\begin{gathered} \log M_{\text {bulge }} \\ \left(M_{\odot}\right) \\ (1.5) \end{gathered}$	$\begin{gathered} M_{\bullet}\left(\text { low } M_{\bullet}-\text { high } M_{\bullet}\right) \\ \left(M_{\odot}\right) \\ (16) \end{gathered}$	$\begin{gathered} \sigma_{e} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \\ (17) \end{gathered}$		Flags M M • (19)	Source (20)
M 31 M 81 NGC		$\begin{aligned} & 19.5 \\ & 20.3 \\ & 19.1 \\ & \hline 20.5 \\ & 19.4 \\ & 21.8 \\ & 21.1 \end{aligned}$		$\begin{aligned} & 2.9 \\ & 2.9 \\ & 2.8 \\ & 2.9 \\ & 3.0 \\ & 3.0 \\ & 2.7 \end{aligned}$					$\begin{array}{r} 11 . \\ 10 . \\ 9 . \\ 10 . \\ 9 . \\ 10 . \end{array}$	$\begin{aligned} & 7 \pm \\ & 0 \pm \\ & 6 \pm \\ & 9 \pm \\ & 3 \pm \\ & 2 \pm \\ & 4 \pm \end{aligned}$	$\begin{aligned} & 09 \\ & 09 \\ & 09 \\ & \hline 10 \\ & 14 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 7.6 \\ & 0.9 \\ & 4.3 \\ & 1.1 \\ & 8.3 \\ & 7.5 \end{aligned}$	$\begin{aligned} & (6.24 \\ & (4.4 \\ & (0.36 \\ & \hline(3.94 \\ & (0.94 \\ & (7.95 \\ & (3.85 \end{aligned}$	$\begin{array}{lr} - & 7 \\ - & 11 \\ - & 1 \\ \hline- & 4 . \\ - & 1 . \\ - & 8 . \\ - & 14 . \end{array}$	5) $\times 10^{8}$ 1) $\times 10^{7}$ 3) $\times 10^{7}$ 6) $\times 10^{6}$ 4) $\times 10^{6}$ 3) $\times 10^{6}$ 5) $\times 10^{7}$	$\begin{aligned} 240 & \pm \\ 136 & \pm \\ 67 & \pm \\ 105 & \pm \\ 79 & \pm \\ 151 & \pm \\ 88 & \pm \end{aligned}$	12 6 3 20 3 7 3	$\begin{aligned} & 360 \\ & 230 \\ & 145 \\ & 220 \\ & 155 \\ & 283 \\ & 220 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 30 \\ & \pm \quad 6 \\ & \pm 20 \\ & \pm \quad 5 \\ & \pm 9 \\ & \pm 10 \end{aligned}$
Galaxy	Sbc	0.008		-23.7	-21.9	-23.5	0.0	0.19	-20.8	-18.9	-20.5	2.980		10.09 ± 0.10	$4.30(3.94-4.66) \times 10^{6}$	105 ± 20	220 ± 20	10	Genzel + 2010
Circinus	SABb:	2.82	4.71	-22.85	-21.55	-22.47	0.0	0.30	-19.80	-18.49	-19.41	3.052	0.410	9.63 ± 0.14	$1.14(0.94-1.34) \times 10^{6}$	79 ± 3	155 ± 5	30	Greenhill +2003
NGC 1068	Sb	15.99	5.788	-25.23	-24.25	-24.66	0.0	0.41	-22.23	-20.92	-21.84	3.000	0.710	10.92 ± 0.10	$8.39(7.95-8.83) \times 10^{6}$	151 ± 7	283 ± 9	30	Lodato+2003, Huré+2002
NGC 1300	SBbc	21.5	7.564	-24.11	-21.71	-23.98	0.0	0.11	-21.32	-18.92	-21.19	2.791	0.653	9.84 ± 0.10	$7.55(3.89-14.75) \times 10^{7}$	88 ± 3	220 ± 10	20	Atkinson +2005
NGC 2273	SBa	29.5	8.480	-23.89	-22.07	-23.67	0.0	0.19	-20.88	-19.06	-20.66	3.007	0.827	10.08 ± 0.09	$8.61(8.15-9.07) \times 10^{6}$	125 ± 9	220 ± 6	30	Kuo + 2011
NGC 2748	Sc	23.49	8.723	-23.13	-20.56	-23.02	0.0	0.094	-20.27	-17.70	-20.16	2.862	0.707	9.41 ± 0.10	$4.44(2.62-6.20) \times 10^{7}$	115 ± 5	150 ± 10	20	Atkinson +2005
NGC 2787	SB0/a	7.45	7.263	-22.14	-21.06	-21.64	0.11	0.26	-19.10	-18.02	-18.60	3.038	0.944	9.78 ± 0.09	$4.07(3.55-4.47) \times 10^{7}$	189 ± 9	226 ± 10	20	Sarzi +2001
NGC 3227	SBa	23.75	7.639	-24.25	-21.83	-24.12	0.0	0.108	-21.55	-19.13	-21.43	2.696	0.800	9.99 ± 0.09	$2.10(0.98-2.79) \times 10^{7}$	133 ± 12	250 ± 10	10	Davies + 2006
NGC 3368	SABab	10.62	6.320	-23.99	-22.48	-23.68	0.0	0.25	-21.14	-19.63	-20.82	2.854	0.838	10.26 ± 0.09	$7.66(6.13-9.19) \times 10^{6}$	125 ± 6	204 ± 5	10	Nowak +2010
NGC 3384	SB0	11.49	6.750	-23.65	-22.56	-23.15	0.0	0.37	-20.55	-19.46	-20.05	3.105	0.906	10.34 ± 0.09	$1.08(0.59-1.57) \times 10^{7}$	146 ± 7	160 ± 10	11	Schulze +2011
NGC 3393	SABa	49.29	9.059	-24.45	-23.03	-24.11	0.0	0.27	-21.48	-20.05	-21.14	2.968	0.813	10.48 ± 0.09	$1.57(0.58-2.55) \times 10^{7}$	148 ± 10		30	Kondratko+2008, Huré+2011
NGC 3489	SABa	11.98	7.370	-23.29	-22.15	-22.82	0.11	0.24	-20.17	-19.03	-19.70	3.120	0.815	10.11 ± 0.09	$5.94(5.11-6.78) \times 10^{6}$	113 ± 4		10	Nowak +2010
NGC 3945	SB0	19.59	7.526	-23.93	-22.88	-23.41	0.04	0.34	-20.95	-19.90	-20.43	2.980	0.925	10.50 ± 0.09	$8.8(0.00-25.5) \times 10^{6}$	192 ± 10		10	Gültekin + 2009b
NGC 4388	SBbc	16.53	8.004	-23.10	-20.55	-22.99	0.0	0.096	-20.14	-17.60	-20.03	2.955	0.711	9.41 ± 0.10	$7.31(7.13-7.48) \times 10^{6}$	99 ± 10	200 ± 10	30	Kuo + 2011
NGC 4736	Sab	5.002	5.106	-23.39	-22.29	-22.91	0.0	0.36	-20.68	-19.58	-20.20	2.710	0.735	10.13 ± 0.10	$6.77(5.21-8.33) \times 10^{6}$	120 ± 6	181 ± 10	10	Gebhardt + 2013
NGC 4826	Sab	7.272	5.330	-23.99	-22.24	-23.75	0.0	0.20	-20.98	-19.23	-20.74	3.009	0.803	10.14 ± 0.09	$1.56(1.17-1.95) \times 10^{6}$	104 ± 3	155 ± 5	10	Gebhardt + 2013
NGC 4945	Scd	3.58	4.438	-23.38	-20.50	-23.30	0.0	0.07	-20.58	-17.70	-20.50	2.801	1.20	9.35 ± 0.12	$1.35(0.87-2.03) \times 10^{6}$	134 ± 20	174 ± 10	30	Greenhill +1997 b
NGC 6264	SBb	147.69	11.407	-24.5	-22.6	-24.3	0.0	0.17				10.36 ± 0.09	$3.08(3.04-3.12) \times 10^{7}$	158 ± 15		30	Kuo + 2011
NGC 6323	SBab	113.49	10.530	-24.80	-21.55	-24.75	0.0	0.050						9.94 ± 0.09	$1.01(1.00-1.03) \times 10^{7}$	158 ± 26		30	Kuo + 2011
NGC 7582	SBab	22.39	7.316	-24.43	-21.96	-24.31	0.0	0.103	-21.78	-19.31	-21.66	2.649	0.738	10.02 ± 0.10	$5.51(4.56-6.81) \times 10^{7}$	156 ± 19	226 ± 10	20	Wold + 2006
IC 2560	SBbc	37.29	8.694	-24.19	-22.05	-24.02	0.0	0.14	-21.65	-19.51	-21.48	2.541	0.886	10.12 ± 0.09	$5.01(0.00-5.72) \times 10^{6}$	141 ± 10	196 ± 3	30	Yamauchi +2012
UGC 3789	SABab	49.9	9.510	-24.03	-22.79	-23.61	0.0	0.32	-21.13	-19.89	-20.71	2.9	0.86	10.39 ± 0.09	$9.65(8.10-11.20) \times 10^{6}$	107 ± 12	273 ± 20	30	Kuo+2011, Huré+2011

 Column 3 is the assumed distance (see notes to Table 2). For our Galaxy, Circinus, NGC 4945, and UGC 3789, see supplemental notes on individual galaxies

 galaxy bulge

M• $-\sigma$ Relation

$M_{\bullet}-\sigma$ Relation

$$
\frac{M_{\bullet}}{10^{9} M_{\odot}}=\left(0.309_{-0.033}^{+0.037}\right)\left(\frac{\sigma}{200 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{4.38 \pm 0.29} \text { intrinsic scatter }=0.28
$$

$M_{\bullet}-M_{\text {bulge }}$ Relation

$M_{\bullet}-M_{\text {bulge }}$ Relation

$$
\frac{M_{\bullet}}{10^{9} M_{\odot}}=\left(0.49_{-0.05}^{+0.06}\right)\left(\frac{M_{\text {bulge }}}{10^{11} M_{\odot}}\right)^{1.16 \pm 0.08} ; \text { intrinsic scatter }=0.29 \text { dex. }
$$

$M_{\bullet}-M_{\text {bulge }}$ Relation

$$
\frac{M_{\bullet}}{10^{9} M_{\odot}}=\left(0.49_{-0.05}^{+0.06}\right)\left(\frac{M_{\text {bulge }}}{10^{11} M_{\odot}}\right)^{1.16 \pm 0.08} ; \text { intrinsic scatter }=0.29 \text { dex. }
$$

Virial BH Masses for Type 1 AGNs

$$
M_{\mathrm{virial}}=f R V^{2} / G
$$

f geometric fudge factor
R BLR radius
V BLR velocity dispersion

Virial BH Masses for Type 1 AGNs

$M_{\text {virial }}=f R V^{2} / G$
f geometric fudge factor
R BLR radius
V BLR velocity dispersion

Virial BH Masses for Type 1 AGNs

Peterson et al. (2002)
$M_{\text {virial }}=f R V^{2} / G$
f geometric fudge factor
R BLR radius
V BLR velocity dispersion

Virial BH Masses for Type 1 AGNs

$M_{\text {virial }}=f R V^{2} / G$
f geometric fudge factor
R BLR radius
V BLR velocity dispersion

Ho \& $\operatorname{Kim}(2014,2015)$

Virial BH Masses for Type 1 AGNs

$M_{\text {virial }}=f R V^{2} / G$
f geometric fudge factor
R BLR radius
V BLR velocity dispersion

Ho \& $\operatorname{Kim}(2014,2015)$

Virial BH Masses for Type 1 AGNs

$$
M_{\text {virial }}=f R V^{2} / G
$$

f geometric fudge factor R BLR radius
V BLR velocity dispersion
M. can be estimated to an accuracy of $\sim 0.3-0.5 \mathrm{dex}$ for $z \approx 0-6$

Correlation Between Black Hole Mass and Bulge Mass

Correlation Between Black Hole Mass and Bulge Mass

NGC 205

M32

NGC 205

M32

M31 G1
(Mayall II)

Mortlock et al. (2011)

J. Wise \mathcal{E} T. Abel

Filippenko \& Ho (2003); Barth et al. (2004); Ho (2008, ARA\&A)

Filippenko \& Ho (2003); Barth et al. (2004); Ho (2008, ARA\&A)

NGC 4395
Sdm

NGC 4395

Sdm

$$
M_{0}=10^{4}-10^{5} M_{\odot}
$$

POX 52

Sph or dE

POX 52

Sph or $d E$

$$
M_{\bullet}=1.6 \times 10^{5} M_{\odot}
$$

Greene \& Ho (2004, 2007a,b); Dong, Ho et al. (2012)

Greene \& Ho (2004, 2007a,b); Dong, Ho et al. (2012)

HST/ACS

Greene, Ho \& Barth (2008); Jiang, Greene \& Ho (2011a, b)

Moran et al. (2014); cf. Barth, Greene E Ho (2008)

$$
M_{g}>-18 \mathrm{mag} \quad M_{*}=10^{8}-10^{9} M_{\odot}
$$

Recent Updates

\bigcirc Central BHs detected from $10^{4}-10^{10} M_{\odot}$
\bigcirc All bulges contain BHs, but not all BHs live in bulges
$\bigcirc M_{\bullet} \sim M_{\text {bulge }}^{1.2} \quad\left\langle M_{\bullet} / M_{\text {bulge }}\right\rangle \sim 0.5 \%$
$\bigcirc M_{\bullet} \propto \sigma^{4.4}$
$Q_{\bullet}-\sigma$ and $M_{\bullet}-M_{\text {bulge }}$ relations have similar scatter
\bigcirc Scaling relations only tight for classical bulges and Es
Scaling relations already in place for high-z QSOs
© Mild evolution only for most massive BHs
\bigcirc AGN feedback effective only for classical bulges and Es
Sriverath

Opportunities with ALMA

BH masses using nuclear (cold) gas disks

ISM content of quasars at all redshifts
\bigcirc Dynamical masses of quasar host galaxies (CO ladder, [C II]) Gas distribution and kinematics

Thirty Meter Telescope

Future Directions with TMT

Future Directions with TMT

© Direct measurement of low-mass BHs in dwarf galaxies
\bigcirc Direct measurement of BH masses in high-z inactive galaxies
\bigcirc Direct measurement of BH-host scaling relations at high-z
© Calibration of BH masses in reverberation-mapped AGNs

- Stellar orbital structure of centers of BCGs, constrain growth mechanism of most massive BHs

