Black Holes, Big and Small Impact on Galaxy Formation

Luis C. Ho (何子山) Kavli Institute for Astronomy and Astrophysics (KIAA) Peking University

Barth, Ho et al. (2001)

The "Nuker" Team

Correlation Between Black Hole Mass and Bulge Mass

Gebhardt et al. (2000); Ferrarese & Merritt (2000); Gültekin et al. (2009)

T = 0 Myr

10 kpc/h

Gaiblier et al. (2012)

Schawinski et al. (2010)

Standard "Paradigm"

All bulges contain BHs

 $M_{\bullet} \sim M_{\text{bulge}}^{1.0} \qquad \langle M_{\bullet} / M_{\text{bulge}} \rangle \sim 0.1\% - 0.2\%$ $M_{\bullet} \propto \sigma^4$

 $\sim M_{\bullet} - \sigma$ relation tighter than $M_{\bullet} - M_{bulge}$ relation

No strong dependence on galaxy mass or type

Mild to strong evolution with redshift

AGN feedback engineers BH-host correlations

Recent Developments

Kormendy & Ho (2013, ARA&A):

Coevolution (or Not) of Supermassive Black Holes and Galaxies

NGC 4889: $M_{\odot} = 2.1 \times 10^{10} M_{\odot}$ (McConnell et al. 2011)

Table 2Supermassive black holes detected dynamically in 45 elliptical galaxies (December 2012)

Galaxy	Type	Distance	K_s	M_{KsT}	M_{VT} ($V-K_s)_0$	$(B-V)_0$	$\log M_{\rm bulge}$	$M_{\bullet}(\text{low } M_{\bullet} - \text{high } M_{\bullet})$	σ_e	Flags	Source
		(Mpc)						(M_{\odot})	(M_{\odot})	$({\rm km \ s}^{-1})$	M C M	•
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
M 32	E2	0.805 7	5.10	-19.45	-16.64	2.816	0.895	9.05 ± 0.10	$2.45(1.43 - 3.46) \times 10^{6}$	77 ± 3	101	van den Bosch $+ 2010$
NGC 1316	6 E4	20.95 1	5.32	-26.29	-23.38	2.910	0.871	11.84 ± 0.09	$1.69(1.39 - 1.97) \times 10^{8}$	226 ± 9	100	Nowak $+ 2008$
NGC 1332	2 E6	$22.66\ 2$	7.05	-24.73	-21.58	3.159	0.931	11.27 ± 0.09	$1.47(1.27 - 1.68) \times 10^9$	328 ± 9	100	Rusli + 2011
NGC 1374	4 E0	$19.57\ 1$	8.16	-23.30	-20.43	2.874	0.908	10.65 ± 0.09	$5.90(5.39 - 6.51) \times 10^8$	167 ± 03	101	Rusli+2013
NGC 1399	9 E1	20.85 1	6.31	-25.29	-22.43	2.863	0.948	11.50 ± 0.09	$8.81(4.35 - 17.81) \times 10^8$	315 ± 03	$1 \ 1 \ 0$	see notes
NGC 1407	7 E0	$29.00\ 2$	6.46	-25.87	-22.89	2.980	0.969	11.74 ± 0.09	$4.65(4.24 - 5.38) \times 10^9$	276 ± 2	$1 \ 1 \ 1 \ 1$	Rusli+2013
NGC 1550	0 E1	52.50 9	8.77	-24.87	-21.89	2.974	0.963	11.33 ± 0.09	$3.87(3.16 - 4.48) \times 10^9$	270 ± 10	111	Rusli+2013
NGC 2778	8 E2	$23.44\ 2$	9.51	-22.34	-19.39	2.955	0.911	10.26 ± 0.09	$1.45(0.00 - 2.91) \times 10^{7}$	175 ± 8	$1 \ 0 \ 1$	Schulze $+$ 2011
NGC 2960	0 E2	67.1 9	9.78	-24.36	-21.30	3.068	0.880	11.06 ± 0.09	$1.08(1.03 - 1.12) \times 10^{7}$	166 ± 16	$3 \ 0 \ 0$	Kuo + 2011
NGC 3091	1 E3	$53.02 \ 9$	8.09	-25.54	-22.56	2.980	0.962	11.61 ± 0.09	$3.72(3.21 - 3.83) \times 10^9$	297 ± 12	$1 \ 1 \ 1$	Rusli+2013
NGC 3377	7 E5	10.99 2	7.16	-23.06	-20.08	2.980	0.830	10.50 ± 0.09	$1.78(0.85 - 2.72) \times 10^8$	145 ± 7	$1 \ 0 \ 1$	Schulze $+$ 2011
NGC 3379	9 E1	$10.70\ 2$	6.27	-23.88	-21.01	2.867	0.939	10.91 ± 0.09	$4.16(3.12 - 5.20) \times 10^{8}$	206 ± 10	$1 \ 1 \ 1$	van den Bosch + 2010
NGC 3607	7 E1	$22.65\ 2$	6.99	-24.79	-21.92	2.872	0.911	11.26 ± 0.09	$1.37(0.90 - 1.82) \times 10^8$	229 ± 11	$1 \ 1 \ 0$	Gültekin + 2009b
NGC 3608	8 E1	$22.75\ 2$	7.62	-24.17	-21.19	2.980	0.921	11.01 ± 0.09	$4.65(3.66 - 5.64) \times 10^8$	182 ± 9	111	Schulze $+$ 2011
NGC 3842	2 E1	92.2 9	8.84	-25.99	-23.01	2.980	0.941	11.77 ± 0.09	$9.09(6.28 - 11.43) \times 10^9$	270 ± 27	$1 \ 1 \ 1$	McConnell + 2012
NGC 4261	1 E2	$32.36\ 2$	6.94	-25.62	-22.64	2.980	0.974	11.65 ± 0.09	$5.29(4.21 - 6.36) \times 10^8$	315 ± 15	$2\ 1\ 0$	Ferrarese + 1996
NGC 4291	1 E2	$26.58\ 2$	8.42	-23.72	-20.76	2.954	0.927	10.85 ± 0.09	$9.78(6.70 - 12.86) \times 10^{8}$	242 ± 12	$1 \ 1 \ 1$	Schulze $+$ 2011
NGC 4374	4 E1	$18.51\ 1$	5.75	-25.60	-22.62	2.980	0.945	11.62 ± 0.09	$9.25(8.38 - 10.23) \times 10^{8}$	296 ± 14	$2\ 1\ 0$	Walsh + 2010
NGC 4382	2 E2	$17.88\ 1$	5.76	-25.51	-22.53	2.980	0.863	11.51 ± 0.09	$1.30(0.00 - 22.4) \times 10^{7}$	182 ± 5	$1 \ 1 \ 0$	Gültekin $+$ 2011
NGC 4459	9 E2	$16.01\ 1$	7.15	-23.88	-20.91	2.975	0.909	10.88 ± 0.09	$6.96(5.62 - 8.29) \times 10^7$	167 ± 8	$2 \ 0 \ 0$	Sarzi + 2001
NGC 4472	2 E2	$16.72\ 1$	4.97	-26.16	-23.18	2.980	0.940	11.84 ± 0.09	$2.54(2.44 - 3.12) \times 10^9$	$300\pm~7$	$1 \ 1 \ 1$	Rusli + 2013
NGC 4473	3 E5	$15.25\ 1$	7.16	-23.77	-20.89	2.874	0.935	10.85 ± 0.09	$0.90(0.45 - 1.35) \times 10^{8}$	190 ± 9	$1 \ 0 \ 1$	Schulze $+$ 2011
M87	E1	$16.68\ 1$	5.27	-25.85	-22.87	2.980	0.940	11.72 ± 0.09	$6.15(5.78 - 6.53) \times 10^9$	324^{+28}_{-12}	$1 \ 1 \ 1$	Gebhardt $+$ 2011
NGC 4486	6AE2	$18.36\ 1$	9.49	-21.83	-18.85	2.980		10.04 ± 0.09	$1.44(0.92 - 1.97) \times 10^{7}$	111 ± 5	$1 \ 0 \ 0$	Nowak $+$ 2007
NGC 4486	$6\mathrm{B}\mathrm{E0}$	$16.26\ 1$	10.39	-20.67	-17.69	2.980	0.991	9.64 ± 0.10	6. $(4 9.) \times 10^8$	185 ± 9	$1 \ 0 \ 0$	Kormendy $+$ 1997
NGC 4649	9 E2	$16.46\ 1$	5.49	-25.61	-22.63	2.980	0.947	11.64 ± 0.09	$4.72(3.67 - 5.76) \times 10^9$	380 ± 19	$1 \ 1 \ 1$	Shen + 2010
NGC 4697	7 E5	$12.54\ 1$	6.37	-24.13	-21.33	2.799	0.883	10.97 ± 0.09	$2.02(1.52 - 2.53) \times 10^{8}$	177 ± 8	$1 \ 0 \ 1$	Schulze $+$ 2011
NGC 4751	1 E6	$32.81\ 2$	8.24	-24.38	-21.22	3.158	0.983	11.16 ± 0.09	$2.44(2.07 - 2.56) \times 10^9$	355 ± 14	$1 \ 0 \ 1$	Rusli + 2013
NGC 4889	9 E4	102.0 9	8.41	-26.64	-23.63	3.007	1.031	12.09 ± 0.09	$2.08(0.49 - 3.66) \times 10^{1}$	$^{0}347 \pm 5$	$1 \ 1 \ 1$	McConnell + 2012
NGC 5077	7 E3	38.7 9	8.22	-24.74	-21.66	2.949	0.987	11.28 ± 0.09	$8.55(4.07 - 12.93) \times 10^{8}$	222 ± 11	$2\ 1\ 0$	De Francesco + 2008
NGC 5128	8 E	3.62 6	3.49	-24.34	-21.36	2.980	0.898	11.05 ± 0.09	$5.69(4.65 - 6.73) \times 10^7$	150 ± 7	$1 \ 1 \ 0$	Cappellari + 2009
NGC 5516	6 E3	$55.3 \ 9$	8.31	-25.47	-22.50	2.970	0.993	11.60 ± 0.09	$3.69(2.65 - 3.79) \times 10^{9}$	328 ± 11	$1 \ 1 \ 1$	Rusli + 2013
NGC 5576	6 E3	$25.68\ 2$	7.83	-24.23	-21.29	2.939	0.862	11.00 ± 0.09	$2.73(1.94 - 3.41) \times 10^{8}$	183 ± 9	$1 \ 1 \ 0$	Gültekin $+$ 2009b
NGC 5845	5 E3	$25.87\ 2$	9.11	-22.97	-19.73	3.238	0.973	10.57 ± 0.09	$4.87(3.34 - 6.40) \times 10^{8}$	239 ± 11	$1 \ 0 \ 1$	Schulze $+$ 2011
NGC 6086	6 E	138.0 9	9.97	-25.74	-22.84	2.884	0.965	11.69 ± 0.09	$3.74(2.59 - 5.50) \times 10^9$	318 ± 2	$1 \ 1 \ 1$	McConnell + 2011b
NGC 6251	1 E1	108.4 9	9.03	-26.18	-23.18	2.998		11.88 ± 0.09	$6.14(4.09 - 8.18) \times 10^{8}$	290 ± 14	$2 \ 1 \ 0$	Ferrarese + 1999
NGC 6861	1 E4	$28.71\ 2$	7.71	-24.60	-21.42	3.179	0.962	11.25 ± 0.09	$2.10(2.00 - 2.73) \times 10^9$	389 ± 3	$1 \ 0 \ 1$	Rusli + 2013
NGC 7052	2 E3	70.4 9	8.57	-25.70	-22.86	2.841	0.86	11.61 ± 0.10	$3.96(2.40 - 6.72) \times 10^{\circ}$	266 ± 13	$2\ 1\ 0$	$\operatorname{van}\operatorname{der}\operatorname{Marel}+1998$
NGC 7619	9 E3	$53.85\ 2$	8.03	-25.65	-22.83	2.821	0.969	11.65 ± 0.09	$2.30(2.19 - 3.45) \times 10^{9}$	292 ± 5	$1 \ 1 \ 1$	Rusli + 2013
NGC 7768	8 E4	116.0 9	9.34	-26.00	-23.19	2.811	0.906	11.75 ± 0.09	$1.34(0.93 - 1.85) \times 10^9$	257 ± 26	$1 \ 1 \ 1$	McConnell + 2012
IC 1459	E4	$28.92\ 2$	6.81	-25.51	-22.42	3.081	0.966	11.60 ± 0.09	$2.48(2.29 - 2.96) \times 10^{9}$	331 ± 5	$1 \ 0 \ 0$	Cappellari $+$ 2002
IC 1481	E1.5	5 89.9 9	10.62	-24.17					$1.49(1.04 - 1.93) \times 10^{7}$		$3 \ 0 \ 0$	Huré + 2011
A1836 BC	CGE	152.4 9	9.99	-25.95	-22.64	3.310	1.043	11.81 ± 0.10	$3.74(3.22 - 4.16) \times 10^9$	288 ± 14	$2\ 1\ 0$	$\mathrm{DallaBont\acute{a}}+2009$
A3565 BC	CGE	49.2 9	7.50	-25.98	-23.03	2.948	0.956	11.78 ± 0.09	$1.30(1.11 - 1.50) \times 10^{9}$	322 ± 16	$2\ 1\ 0$	$\mathrm{DallaBont\acute{a}}+2009$
Cygnus A	E	242.7 9	10.28	-26.77	-23.23	3.54			$2.66(1.91 - 3.40) \times 10^9$	270 ± 90	$2\ 1\ 0$	Tadhunter $+$ 2003

Table 3 Supermassive black holes detected dynamically in spiral and S0 galaxies galaxies (21 with classical bulges; 22 with pseudob	oulges; December 2012)
---	------------------------

Object	Туре	Distance (Mpc)	K_s	M_{KsT}	$M_{Ks, \text{bulge}}$	$M_{Ks,\rm disk}$	B/T	PB/T	M_{VT}	$M_{V,\mathrm{bulge}}$	$M_{V,{ m disk}}$	$(V-K_s)_0$	$(B-V)_0$	$\log M_{\text{bulge}}$ (M_{\odot})	$\begin{array}{c} M_{\bullet}(\text{low } M_{\bullet} - \text{high } M_{\bullet}) \\ (M_{\odot}) \end{array}$	σ_e (km s ⁻¹)	$V_{\rm circ}$ (km s ⁻¹)	Flags M M_{\bullet}	Source
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
M 31	Sb	0.774 8	0.573	-23.89	-22.62	-23.85	0.31	0.0	-21.14	-19.64	-20.83	2.746	0.865	10.35 ± 0.09	$1.43(1.12 - 2.34) \times 10^8$	169 ± 8	250 ± 20	10	Bender $+$ 2005
M 81	Sb	3.604 8	3.831	-23.98	-22.81	-23.53	0.34	0.0	-21.06	-19.89	-20.61	2.913	0.879	10.42 ± 0.09	$6.5(5 9.) \times 10'$	143 ± 7	240 ± 10	$1,2\ 0$	see notes
NGC 524	SO	24.22 2	7.163	-24.78	-24.69	-22.04	0.92	0.0	-21.86	-21.77	-19.12	2.923	0.977	11.26 ± 0.09	$8.67(8.21 - 9.61) \times 10^{\circ}$	247 ± 12		10	Krajnović $+ 2009$
NGC 821	SU GDO	23.44 2	(.(15	-24.17	-24.11	-20.92	0.95	0.0	-21.19	-21.13	-17.94	2.980	0.893	10.98 ± 0.09	$1.05(0.92 - 2.39) \times 10^{\circ}$	209 ± 10		11	Schulze $+ 2011$
NGC 1023	SB0	10.81 2	0.238	-23.90	-22.93	-23.41	0.39	0.0	-20.99	-19.90	-20.40	2.904	0.940	10.53 ± 0.09 10.64 ± 0.00	$4.13(3.71 - 4.30) \times 10^{-7}$	200 ± 10 148 ± 24	201 ± 10 202 ± 16	10	Bower $+$ 2001
NGC 194	50/	57.98 9	9.708	-24.08	-23.33	-23.33	0.5	0.0	-21.10	-20.40	-20.40	2.920	0.893	10.04 ± 0.09 11.00 \ 0.00	$1.08(0.70 - 7.41) \times 10^{-1}$	148 ± 24 222 + 17	203 ± 10	30	Kuo + 2011
NGC 1277	50/	(3. 10 12.70.2	9.015	-24.05	-23.98	-25.70	0.00	0.0	-21.51	-20.07	-20.40	0.010 0.040	0.960	11.00 ± 0.09 0.71 \pm 0.00	$1.7 (1.4 - 2.0) \times 10$ $1.45(0.21 - 1.65) \times 10^7$	333 ± 17 145 ± 7		11	van den Bosch $+ 2012$
NGC 2049	50/	12.70 2	0.040 5 999	-22.49	-20.99	-22.10 21.52	0.20	0.0	-19.00	-16.00	-19.24	2.942	0.912	9.71 ± 0.09 10.02 \pm 0.00	$1.45(0.51 - 1.05) \times 10^{-8}$	140 ± 7 220 ± 11	$\frac{1}{215} \pm 20$	10	Krajnovic + 2009
NGC 3115	50/ 50	9.04 2	0.000 7.862	-24.03	-23.91	-21.00	0.90	0.0	-21.13	-21.01 20.50	-10.03 10.58	2.901 2.014	0.920	10.92 ± 0.09 10.60 ± 0.00	$0.97(0.20 - 9.04) \times 10^{-10}$	230 ± 11 205 ± 10	313 ± 20	11	Emsenem $+ 1999$ Porth $+ 2001$
NGC 3585	50	$21.36\ 2$	6 703	-23.00 -24.88	-23.41 -24.80	-22.49 -21.00	0.70	0.0	-20.00 -21.03	-20.50 -21.85	-19.00 -10.04	2.914 2.051	0.000	10.09 ± 0.09 11.26 ± 0.00	$2.39(1.03 - 2.00) \times 10^{-3}$ $3.20(2.71 - 4.74) \times 10^{8}$	203 ± 10 213 ± 11	$$ 280 \pm 20	20	Cultokin + 2000
NGC 3008	S0	14 30 2	7 365	-24.00 -23.42	-24.00 -23.24	-21.33 -21.36	0.95	0.0	-21.55 -20.63	-21.00 -20.46	-13.04 -18.57	2.331 2.786	0.915	11.20 ± 0.09 10.67 ± 0.09	$8.45(7.79 - 9.15) \times 10^8$	215 ± 11 275 ± 7	200 ± 20	11	Welch ± 2012
NGC 3008	S0	$14.30\ 2$ $14.30\ 2$	7 365	-23.42 -23.42	-23.24 -23.24	-21.30 -21.36	0.85	0.0	-20.03 -20.63	-20.40 -20.46	-18.57	2.786	0.930	10.07 ± 0.09 10.67 ± 0.09	$2.27(1.43 - 3.28) \times 10^8$	275 ± 7 275 ± 7		2.0	$P_{\text{Prancesco}} \pm 2006$
NGC 4026	SO	13 35 2	7 584	-23.05	-22.51	-22.03	0.61	0.0	-20.03	-19.47	-18.99	3 043	0.900	10.07 ± 0.09 10.33 ± 0.09	$1.80(1.45 - 2.40) \times 10^8$	180 ± 9	300 ± 20	10	Gultekin + 2009a
NGC 4258	SABbc	7.27.6	5.464	-23.85	-21.51	-23.71	0.01	0.0	-20.01	-18.64	-20.80	2.907	0.500	9.86 ± 0.09	$3.78(3.74 - 3.82) \times 10^7$	100 ± 0 115 ± 10	208 ± 6	3.0	Section 3.3
NGC 4342	SO	22.91.3	9.023	-22.78	-22.40	-21.48	0.12	0.01	-1950	-19.01	-18.19	3 287	0.932	10.31 ± 0.09	$453(305 - 718) \times 10^8$	225 ± 11	200 ± 0	1.0	Cretton + 1999b
NGC 4526	S0/	16.44 2	6.473	-24.61	-24.15	-23.47	0.65	0.0	-21.44	-20.98	-20.30	3.170	0.941	11.02 ± 0.09	$4.51(3.48 - 5.91) \times 10^8$	220 ± 11 222 ± 11	290 ± 20	4 0	Davis + 2013
NGC 4564	SO	15.94 2	7.937	-23.09	-22.65	-21.88	0.67	0.0	-20.06	-19.62	-18.85	3.028	0.899	10.38 ± 0.09	$8.81(6.38 - 11.26) \times 10^7$	162 ± 8		11	Schulze $+$ 2011
NGC 4594	Sa	9.87 2	4.625	-25.36	-25.28	-22.55	0.925	0.01	-22.38	-22.30	-19.57	2.980	0.934	11.47 ± 0.09	$6.65(6.24 - 7.05) \times 10^8$	240 ± 12	360 ± 10	11	Jardel + 2011
NGC 4596	SB0	16.53 4	7.463	-23.64	-22.21	-23.29	0.27	0.0	-20.72	-19.30	-20.38	2.913	0.920	10.20 ± 0.09	$7.67(4.43 - 11.41) \times 10^7$	136 ± 6	230 ± 30	$2 \ 0$	Sarzi + 2001
NGC 7457	$\mathbf{S0}$	$12.53\ 2$	8.179	-22.33	-20.82	-22.02	0.25	0.0	-19.45	-17.94	-19.14	2.880	0.844	9.56 ± 0.09	$0.90(0.36 - 1.43) \times 10^7$	67 ± 3	$145\pm~6$	11	Schulze $+$ 2011
Galaxy	Shc	0.00828		-237	-21.9	-235	0.0	0.19	-20.8	-18.9	-205	2 980		10.09 ± 0.10	$4 30(3 94 - 4 66) \times 10^{6}$	105 ± 20	220 ± 20	1.0	Genzel + 2010
Circinus	SABh:	2.82	4.71	-22.85	-21.55	-22.47	0.0	0.30	-19.80	-18.49	-19.41	3.052	0.410	9.63 ± 0.14	$1.14(0.94 - 1.34) \times 10^{6}$	79 ± 3	155 ± 5	3.0	Greenhill + 2003
NGC 1068	Sb	15.9 9	5.788	-25.23	-24.25	-24.66	0.0	0.41	-22.23	-20.92	-21.84	3.000	0.710	10.92 ± 0.10	$8.39(7.95 - 8.83) \times 10^{6}$	151 ± 7	283 ± 9	3 0	Lodato+2003, $Huré+2002$
NGC 1300	SBbc	21.5 9	7.564	-24.11	-21.71	-23.98	0.0	0.11	-21.32	-18.92	-21.19	2.791	0.653	9.84 ± 0.10	$7.55(3.89 - 14.75) \times 10^7$	88 ± 3	220 ± 10	2 0	Atkinson + 2005
NGC 2273	SBa	29.5 9	8.480	-23.89	-22.07	-23.67	0.0	0.19	-20.88	-19.06	-20.66	3.007	0.827	10.08 ± 0.09	$8.61(8.15 - 9.07) \times 10^6$	125 ± 9	220 ± 6	30^{-0}	Kuo + 2011
NGC 2748	Sc	23.4 9	8.723	-23.13	-20.56	-23.02	0.0	0.094	-20.27	-17.70	-20.16	2.862	0.707	9.41 ± 0.10	$4.44(2.62 - 6.20) \times 10^7$	115 ± 5	150 ± 10	$2 \ 0$	Atkinson + 2005
NGC 2787	SB0/a	$7.45\ 2$	7.263	-22.14	-21.06	-21.64	0.11	0.26	-19.10	-18.02	-18.60	3.038	0.944	9.78 ± 0.09	$4.07(3.55 - 4.47) \times 10^7$	189 ± 9	226 ± 10	$2 \ 0$	Sarzi + 2001
NGC 3227	$^{ m SBa}$	$23.75\ 2$	7.639	-24.25	-21.83	-24.12	0.0	0.108	-21.55	-19.13	-21.43	2.696	0.800	9.99 ± 0.09	$2.10(0.98 - 2.79) \times 10^7$	133 ± 12	250 ± 10	$1 \ 0$	Davies $+$ 2006
NGC 3368	SABab	$10.62 \ 2$	6.320	-23.99	-22.48	-23.68	0.0	0.25	-21.14	-19.63	-20.82	2.854	0.838	10.26 ± 0.09	$7.66(6.13 - 9.19) \times 10^{6}$	125 ± 6	204 ± 5	$1 \ 0$	Nowak $+$ 2010
NGC 3384	SB0	$11.49\ 2$	6.750	-23.65	-22.56	-23.15	0.0	0.37	-20.55	-19.46	-20.05	3.105	0.906	10.34 ± 0.09	$1.08(0.59 - 1.57) \times 10^{7}$	$146\pm~7$	160 ± 10	1 1	Schulze $+$ 2011
NGC 3393	SABa	49.2 9	9.059	-24.45	-23.03	-24.11	0.0	0.27	-21.48	-20.05	-21.14	2.968	0.813	10.48 ± 0.09	$1.57(0.58 - 2.55) \times 10^7$	148 ± 10		$3 \ 0$	Kondratko+2008, Huré+2011
NGC 3489	SABa	$11.98\ 2$	7.370	-23.29	-22.15	-22.82	0.11	0.24	-20.17	-19.03	-19.70	3.120	0.815	10.11 ± 0.09	$5.94(5.11 - 6.78) \times 10^{6}$	113 ± 4		$1 \ 0$	Nowak $+$ 2010
NGC 3945	SB0	$19.5 \ 9$	7.526	-23.93	-22.88	-23.41	0.04	0.34	-20.95	-19.90	-20.43	2.980	0.925	10.50 ± 0.09	8.8 $(0.00 - 25.5) \times 10^6$	192 ± 10		$1 \ 0$	Gültekin + 2009b
NGC 4388	SBbc	$16.53\ 4$	8.004	-23.10	-20.55	-22.99	0.0	0.096	-20.14	-17.60	-20.03	2.955	0.711	9.41 ± 0.10	$7.31(7.13 - 7.48) \times 10^{6}$	99 ± 10	200 ± 10	$3 \ 0$	Kuo + 2011
NGC 4736	Sab	$5.00\ 2$	5.106	-23.39	-22.29	-22.91	0.0	0.36	-20.68	-19.58	-20.20	2.710	0.735	10.13 ± 0.10	$6.77(5.21 - 8.33) \times 10^{6}$	120 ± 6	181 ± 10	$1 \ 0$	Gebhardt $+$ 2013
NGC 4826	Sab	$7.27\ 2$	5.330	-23.99	-22.24	-23.75	0.0	0.20	-20.98	-19.23	-20.74	3.009	0.803	10.14 ± 0.09	$1.56(1.17 - 1.95) \times 10^{6}$	104 ± 3	155 ± 5	$1 \ 0$	Gebhardt $+$ 2013
NGC 4945	Scd	3.58	4.438	-23.38	-20.50	-23.30	0.0	0.07	-20.58	-17.70	-20.50	2.801	1.20	9.35 ± 0.12	$1.35(0.87 - 2.03) \times 10^{6}$	134 ± 20	174 ± 10	$3 \ 0$	Greenhill + 1997b
NGC 6264	SBb	147.6 9	11.407	-24.5	-22.6	-24.3	0.0	0.17						10.36 ± 0.09	$3.08(3.04 - 3.12) \times 10^{7}$	158 ± 15		$3 \ 0$	Kuo + 2011
NGC 6323	SBab	113.4 9	10.530	-24.80	-21.55	-24.75	0.0	0.050						9.94 ± 0.09	$1.01(1.00 - 1.03) \times 10^{7}$	158 ± 26		$3 \ 0$	Kuo + 2011
NGC 7582	SBab	22.3 9	7.316	-24.43	-21.96	-24.31	0.0	0.103	-21.78	-19.31	-21.66	2.649	0.738	10.02 ± 0.10	$5.51(4.56 - 6.81) \times 10^{7}$	156 ± 19	226 ± 10	$2 \ 0$	Wold $+$ 2006
IC 2560	SBbc	37.2 9	8.694	-24.19	-22.05	-24.02	0.0	0.14	-21.65	-19.51	-21.48	2.541	0.886	10.12 ± 0.09	$5.01(0.00 - 5.72) \times 10^{6}$	141 ± 10	196 ± 3	$3 \ 0$	Yamauchi $+$ 2012
UGC 3789	SABab	49.9	9.510	-24.03	-22.79	-23.61	0.0	0.32	-21.13	-19.89	-20.71	2.9	0.86	10.39 ± 0.09	$9.65(8.10 - 11.20) \times 10^{6}$	107 ± 12	273 ± 20	$3 \ 0$	Kuo+2011, Huré+2011

Column 1 is the galaxy name. Rows are printed in red for galaxies with classical bulges; these are plotted with red symbols in BH correlation diagrams. Blue text and plot symbols are used for pseudobulges. The cyan M_{\bullet} for NGC 3998 is plotted only in Figure 12. Column 2 is the galaxy Hubble type, mostly from RC3 with a few corrections from Kormendy & Bender (2013b). Column 3 is the assumed distance (see notes to Table 2). For our Galaxy, Circinus, NGC 4945, and UGC 3789, see supplemental notes on individual galaxies. Column 4 is the 2MASS K_s total magnitude. For three galaxies, it has been corrected as discussed in Apparent Magnitude Corrections in the table supplemental notes and in Supplemental Information. These corrections are generally negligible for disk galaxies,

Object	Type	Distance (Mpc)	K_s	M_{KsT}	$M_{Ks, \text{bulge}}$	$M_{Ks,\rm disk}$	B/T	PB/T	M_{VT}	$M_{V,\mathrm{bulge}}$	$M_{V,\rm disk}$	$(V-K_s)_0 ($	$(B-V)_0$	$\log M_{\text{bulge}}$ (M_{\odot})	$\begin{array}{c} M_{\bullet}(\text{low } M_{\bullet} - \text{high } M_{\bullet}) \\ (M_{\odot}) \end{array}$	σ_e $(\mathrm{km \ s}^{-1})$ (k	$V_{\rm circ}$ km s ⁻¹)	Flags S M M_{\bullet}	ource
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19) (1	20)
M 31 M 81 NGC NGC 1 NGC 1 NGC 2 NGC 2 NGC 2 NGC 3 NGC 3 NGC 3 NGC 4 NGC 4		-19.57 -20.38 -19.14 -20.5 -19.41 -21.84		2.93 2.93 2.83 2.93 3.03 3.04	80 13 80 80 52 00	0 0 0 0	.934 .920 .844 .410 .710		11.4 10.2 9.5 10.0 9.6	$ \begin{bmatrix} 7 \pm 0 \\ 20 \pm 0 \\ 56 \pm 0 \\ 99 \pm 0 \\ 53 \pm 0 \\ 92 \pm 0 \end{bmatrix} $	0.09 0.09 0.09 0.10 0.14 0.10	6.657.670.904.301.148.39	(6.24) (4.43) (0.36) (3.94) (0.94) (7.95)	-7.0 -11.4 -1.4 -4.0 -1.3 -8.8	$\begin{array}{c} 05 \\ 8 \\ 41 \\ 10 \\ 10^{7} \\ 43 \\ 10^{7} \\ 10^{7} \\ 10^{7} \\ 10^{6} \\$	$240 \pm 136 \pm 67 \pm 105 \pm 240 \pm 105 \pm 200$	$ \begin{array}{c} 12 \\ 6 \\ 3 \end{array} $ 20 3 7	360 230 145 220 155 283	$ \begin{array}{c} \pm 10 \\ \pm 30 \\ \pm 6 \\ \pm 20 \\ \pm 5 \\ \pm 9 \end{array} $
NGC 4 NGC 4 NGC 4 NGC 4 NGC 7	_	-21.19		2.79	91	0	.653		9.8	34 ± 0	0.10	7.55	(3.89	- 14.7	$(75) \times 10^7_{c}$	$88 \pm$	3	220	± 10
Galaxy Circinus NGC 1068 NGC 1300 NGC 2273 NGC 2748 NGC 2787 NGC 3227 NGC 3368 NGC 3384 NGC 3393 NGC 3393 NGC 3489 NGC 4388 NGC 4388 NGC 4736 NGC 4266 NGC 4264 NGC 6323 NGC 6323 NGC 7582 IC 2560 UGC 3789	Sbc SABb: Sb SBbc SBa SC SB0/a SBa SABa SABa SABa SABa SBbc SBbc SBab SBab SBab SBbc SABab	$\begin{array}{c} 0.00828\\ 2.82\\ 15.9 & 9\\ 21.5 & 9\\ 29.5 & 9\\ 23.4 & 9\\ 7.45 & 2\\ 23.75 & 2\\ 10.62 & 2\\ 11.49 & 2\\ 49.2 & 9\\ 11.98 & 2\\ 19.5 & 9\\ 16.53 & 4\\ 5.00 & 2\\ 7.27 & 2\\ 3.58\\ 147.6 & 9\\ 113.4 & 9\\ 22.3 & 9\\ 37.2 & 9\\ 49.9\end{array}$	$\begin{array}{c} \dots \\ 4.71 \\ 5.788 \\ 7.564 \\ 8.480 \\ 8.723 \\ 7.263 \\ 7.639 \\ 6.320 \\ 6.750 \\ 9.059 \\ 7.370 \\ 7.526 \\ 8.004 \\ 5.106 \\ 5.330 \\ 4.438 \\ 11.407 \\ 10.530 \\ 7.316 \\ 8.694 \\ 9.510 \end{array}$	$\begin{array}{c} -23.7 \\ -22.85 \\ -25.23 \\ -24.11 \\ -23.89 \\ -23.13 \\ -22.14 \\ -24.25 \\ -23.99 \\ -23.65 \\ -24.45 \\ -23.29 \\ -23.93 \\ -23.90 \\ -23.39 \\ -23.39 \\ -23.38 \\ -24.5 \\ -24.80 \\ -24.43 \\ -24.19 \\ -24.03 \end{array}$	$\begin{array}{c} -21.9\\ -21.55\\ -24.25\\ -21.71\\ -22.07\\ -20.56\\ -21.06\\ -21.83\\ -22.48\\ -22.56\\ -23.03\\ -22.15\\ -22.88\\ -20.55\\ -22.29\\ -22.24\\ -20.50\\ -22.6\\ -21.55\\ -21.96\\ -22.05\\ -22.79\end{array}$	$\begin{array}{c} -23.5 \\ -22.47 \\ -24.66 \\ -23.98 \\ -23.02 \\ -21.64 \\ -24.12 \\ -23.68 \\ -23.15 \\ -24.11 \\ -22.82 \\ -23.41 \\ -22.99 \\ -22.91 \\ -23.75 \\ -23.30 \\ -24.3 \\ -24.75 \\ -24.31 \\ -24.02 \\ -23.61 \end{array}$	0.0 0.0 0.0 0.0 0.0 0.11 0.0	$\begin{array}{c} 0.19\\ 0.30\\ 0.41\\ 0.11\\ 0.19\\ 0.094\\ 0.26\\ 0.108\\ 0.25\\ 0.37\\ 0.27\\ 0.24\\ 0.34\\ 0.096\\ 0.36\\ 0.20\\ 0.07\\ 0.17\\ 0.050\\ 0.103\\ 0.14\\ 0.32\\ \end{array}$	$\begin{array}{r} -20.8 \\ -19.80 \\ -22.23 \\ -21.32 \\ -20.88 \\ -20.27 \\ -19.10 \\ -21.55 \\ -21.14 \\ -20.55 \\ -21.48 \\ -20.17 \\ -20.95 \\ -20.14 \\ -20.68 \\ -20.98 \\ -20.58 \\ \cdots \\ -21.78 \\ -21.65 \\ -21.13 \end{array}$	$\begin{array}{c} -18.9 \\ -18.49 \\ -20.92 \\ -18.92 \\ -19.06 \\ -17.70 \\ -18.02 \\ -19.13 \\ -19.63 \\ -19.46 \\ -20.05 \\ -19.03 \\ -19.03 \\ -19.90 \\ -17.60 \\ -19.58 \\ -19.23 \\ -17.70 \\ \cdots \\ \cdots \\ -19.31 \\ -19.51 \\ -19.89 \end{array}$	$\begin{array}{c} -20.5 \\ -19.41 \\ -21.84 \\ -21.19 \\ -20.66 \\ -20.16 \\ -18.60 \\ -21.43 \\ -20.82 \\ -20.05 \\ -21.44 \\ -19.70 \\ -20.43 \\ -20.03 \\ -20.20 \\ -20.74 \\ -20.50 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 2.980\\ 3.052\\ 3.000\\ 2.791\\ 3.007\\ 2.862\\ 3.038\\ 2.696\\ 2.854\\ 3.105\\ 2.968\\ 3.120\\ 2.980\\ 2.955\\ 2.710\\ 3.009\\ 2.801\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} \dots \\ 0.410 \\ 0.710 \\ 0.653 \\ 0.827 \\ 0.707 \\ 0.944 \\ 0.800 \\ 0.838 \\ 0.906 \\ 0.813 \\ 0.815 \\ 0.925 \\ 0.711 \\ 0.735 \\ 0.803 \\ 1.20 \\ \dots \\ 0.738 \\ 0.886 \\ 0.86 \\ 0.86 \end{array}$	$\begin{array}{c} 10.09 \pm 0.10 \\ 9.63 \pm 0.14 \\ 10.92 \pm 0.10 \\ 9.84 \pm 0.10 \\ 10.08 \pm 0.09 \\ 9.41 \pm 0.10 \\ 9.78 \pm 0.09 \\ 9.99 \pm 0.09 \\ 10.26 \pm 0.09 \\ 10.34 \pm 0.09 \\ 10.34 \pm 0.09 \\ 10.48 \pm 0.09 \\ 10.11 \pm 0.09 \\ 10.50 \pm 0.09 \\ 9.41 \pm 0.10 \\ 10.13 \pm 0.10 \\ 10.13 \pm 0.10 \\ 10.14 \pm 0.09 \\ 9.35 \pm 0.12 \\ 10.36 \pm 0.09 \\ 9.94 \pm 0.09 \\ 10.02 \pm 0.10 \\ 10.12 \pm 0.09 \\ 10.39 \pm 0.09 \end{array}$	$\begin{array}{r} 4.30(3.94-4.66)\times 10^{6}\\ 1.14(0.94-1.34)\times 10^{6}\\ 8.39(7.95-8.83)\times 10^{6}\\ 7.55(3.89-14.75)\times 10^{7}\\ 8.61(8.15-9.07)\times 10^{6}\\ 4.44(2.62-6.20)\times 10^{7}\\ 4.07(3.55-4.47)\times 10^{7}\\ 2.10(0.98-2.79)\times 10^{7}\\ 7.66(6.13-9.19)\times 10^{6}\\ 1.08(0.59-1.57)\times 10^{7}\\ 1.57(0.58-2.55)\times 10^{7}\\ 5.94(5.11-6.78)\times 10^{6}\\ 8.8\ (0.00-25.5)\times 10^{6}\\ 7.31(7.13-7.48)\times 10^{6}\\ 6.77(5.21-8.33)\times 10^{6}\\ 1.56(1.17-1.95)\times 10^{6}\\ 1.35(0.87-2.03)\times 10^{6}\\ 3.08(3.04-3.12)\times 10^{7}\\ 5.51(4.56-6.81)\times 10^{7}\\ 5.01(0.00-5.72)\times 10^{6}\\ 9.65(8.10-11.20)\times 10^{6}\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 20 \pm 20 \\ 55 \pm 5 \\ 83 \pm 9 \\ 20 \pm 10 \\ 20 \pm 6 \\ 50 \pm 10 \\ 26 \pm 10 \\ 50 \pm 10 \\ 04 \pm 5 \\ 60 \pm 10 \\ \dots \\ 00 \pm 10 \\ 81 \pm 10 \\ 55 \pm 5 \\ 74 \pm 10 \\ \dots \\ 26 \pm 10 \\ 96 \pm 3 \\ 73 \pm 20 \end{array}$	10 C 30 C 30 L 20 A 20 A 20 A 20 A 20 S 10 L 10 N 11 S 30 F 10 C 30 F 10 C 30 F 30 F	Genzel + 2010 Greenhill + 2003 Jodato+2003, Huré+2002 Atkinson + 2005 Yuo + 2011 Atkinson + 2005 Garzi + 2001 Davies + 2006 Joavies + 2010 Genulze + 2011 Yomartko+2008, Huré+2011 Vowak + 2010 Gültekin + 2009b Yuo + 2011 Gebhardt + 2013 Greenhill + 1997b Yuo + 2011 Yold + 2006 Yamauchi + 2012 Yuo+2011, Huré+2011

Table 3 Supermassive black holes detected dynamically in spiral and S0 galaxies galaxies (21 with classical bulges; 22 with pseudobulges; December 2012)

Column 1 is the galaxy name. Rows are printed in red for galaxies with classical bulges; these are plotted with red symbols in BH correlation diagrams. Blue text and plot symbols are used for pseudobulges. The cyan M_{\bullet} for NGC 3998 is plotted only in Figure 12. Column 2 is the galaxy Hubble type, mostly from RC3 with a few corrections from Kormendy & Bender (2013b). Column 3 is the assumed distance (see notes to Table 2). For our Galaxy, Circinus, NGC 4945, and UGC 3789, see supplemental notes on individual galaxies. Column 4 is the 2MASS K_s total magnitude. For three galaxies, it has been corrected as discussed in Apparent Magnitude Corrections in the table supplemental notes and in Supplemental Information. These corrections are generally negligible for disk galaxies,

$M_{\bullet} - \sigma$ Relation

$M_{\bullet} - \sigma$ Relation

$$\frac{M_{\bullet}}{10^9 \ M_{\odot}} = \left(0.309^{+0.037}_{-0.033}\right) \left(\frac{\sigma}{200 \ \mathrm{km \ s^{-1}}}\right)^{4.38 \pm 0.29} \text{ intrinsic scatter} = 0.28$$

$M_{\bullet} - M_{\text{bulge}}$ Relation

M. – M_{bulge} Relation

$$\frac{M_{\bullet}}{10^9 \ M_{\odot}} = \left(0.49^{+0.06}_{-0.05}\right) \left(\frac{M_{\text{bulge}}}{10^{11} \ M_{\odot}}\right)^{1.16\pm0.08}; \text{ intrinsic scatter} = 0.29 \text{ dex.}$$
$M_{\bullet} - M_{\text{bulge}}$ Relation

$$\frac{M_{\bullet}}{10^9 \ M_{\odot}} = \left(0.49^{+0.06}_{-0.05}\right) \left(\frac{M_{\rm bulge}}{10^{11} \ M_{\odot}}\right)^{1.16\pm0.08}; \text{ intrinsic scatter} = 0.29 \text{ dex.}$$

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion

 $M_{\rm virial} = f R V^2 / G$

f geometric fudge factor

R BLR radius

V BLR velocity dispersion

M• can be estimated to an accuracy of $\sim 0.3 - 0.5$ dex for $z \approx 0 - 6$

Correlation Between Black Hole Mass and Bulge Mass

Correlation Between Black Hole Mass and Bulge Mass

G1: $M_{\odot} = 2 \times 10^4 M_{\odot}$

Gebhardt, Ho & Rich (2005)

Mortlock et al. (2011)

Are there mini-quasars in these "simpler" galaxies?

NGC 4395 Sdm

$M_{\bullet} = 10^4 - 10^5 M_{\odot}$

POX 52 Sph or dE

POX 52 Sph or dE

 $M_{\odot} = 1.6 \times 10^5 M_{\odot}$

Greene & Ho (2004, 2007a,b); Dong, Ho et al. (2012)

Greene & Ho (2004, 2007a,b); Dong, Ho et al. (2012)

HST/ACS

Greene, Ho & Barth (2008); Jiang, Greene & Ho (2011a, b)

Moran et al. (2014); cf. Barth, Greene & Ho (2008)

 $M_g > -18 \text{ mag}$ $M_* = 10^8 - 10^9 M_{\odot}$

Ho (2015)

z=2

Huang, Ho et al. (2013a, b)

z=0

Recent Updates

 \bigcirc Central BHs detected from $10^4 - 10^{10} M_{\odot}$

✓ All bulges contain BHs, but not all BHs live in bulges

 $M_{\bullet} \sim M_{\text{bulge}}^{1.2} \qquad \langle M_{\bullet} / M_{\text{bulge}} \rangle \sim 0.5\%$ $M_{\bullet} \propto \sigma^{4.4}$

 $\bigcirc M_{\bullet} - \sigma$ and $M_{\bullet} - M_{\text{bulge}}$ relations have similar scatter

Scaling relations only tight for classical bulges and Es

Scaling relations already in place for high-z QSOs

Mild evolution only for most massive BHs

G AGN feedback effective only for classical bulges and Es

Opportunities with ALMA

O BH masses using nuclear (cold) gas disks

- **OVER ISM content of quasars at all redshifts**
- Oynamical masses of quasar host galaxies (CO ladder, [C II]) Gas distribution and kinematics

Future Directions with TMT

Future Directions with TMT

Oirect measurement of low-mass BHs in dwarf galaxies

O Direct measurement of BH masses in high-*z* inactive galaxies

O Direct measurement of BH-host scaling relations at high-*z*

Calibration of BH masses in reverberation-mapped AGNs

Stellar orbital structure of centers of BCGs, constrain growth mechanism of most massive BHs