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Observational Studies of Disk 
Formation around Protostars 



Disks are everywhere 

e.g., Guilloteau & Dutrey 1994; Dutrey 1998; Simon et al. 
2000; Pietu et al. 2007; Qi et al. 2003; Andrews et al. 2012; 
Fukagawa et al. 2013; Rosenfeld 2013 ……  
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Figure 5. Moment maps of the CO J = 3 − 2 emission from the TW Hya disk and the various disk structure models compiled in Table 2. The leftmost panels show
the SMA observations. The top panels make a direct comparison with the similarity solution models, and the bottom panels do the same for the power-law models
with sharp edges. In all plots, contours mark the velocity-integrated CO intensities (zeroth moment) at 0.4 Jy km s−1 (∼3σ ) intervals and the color scale corresponds
to the intensity-weighted line velocities (first moment). Only Model sA provides a good match to the observed CO emission; all others predict gas distributions that
are too small relative to observations.
(A color version of this figure is available in the online journal.)

distances from the central star—at least ∼4′′, comparable to
what is inferred from CO spectral images (Krist et al. 2000;
Trilling et al. 2001; Weinberger et al. 2002; Apai et al. 2004;
Roberge et al. 2005). So some dust traces the molecular gas,
even if it is only a limited mass of small grains up in the disk
atmosphere. However, these exquisitely detailed scattered light
images exhibit subtle structural complexities. Krist et al. (2000)
identified four distinct radial zones in the optical scattered light
disk, with a prominent steepening of the brightness distribution
just outside a radius of 50 AU (∼1′′; their zone 1/2 boundary).
Similar infrared behavior is noted in the studies by Weinberger
et al. (2002) and Apai et al. (2004), in which both suggested a
break in the emission profile in the 50–80 AU (∼1.′′0–1.′′5) range.
Those results were confirmed in a comprehensive analysis of
new data by Roberge et al. (2005), who also called attention
to a color change at a similar radius as well as an azimuthal
asymmetry out to a slightly larger distance from the star
(∼135 AU). The physical origin of these scattered light features
has been a mystery, although speculation centered around
variations in the dust height (shadowing) and gradients in the
dust scattering properties (either mineralogical or size-related).
But in light of our discovery of an abrupt drop in the millimeter-
wave continuum emission at the same location as these features,
it is only natural to suspect that a more fundamental change
occurs in the physical structure of the TW Hya dust disk near
60 AU.

Perhaps the most straightforward explanation of the apparent
CO-dust size discrepancy inferred from the SMA data is
that we have used an incomplete description of the disk
structure. As an example, consider a modification of either
model type that incorporates an abrupt decrease in the surface
densities (or millimeter-wave dust opacities)—not the dust-to-
gas ratio—outside r ≈ 60 AU. If that drop in Σ (or κmm) was not
too large (perhaps a factor of ∼100), there would still be enough
disk material to produce bright emission from the optically thick
CO lines and scattered light while also accounting for the sharp
edge feature noted in the optically thin 870 µm emission profile.

This “substructure” in the outer dust disk might actually enhance
the local gas-phase CO abundance, as ultraviolet radiation can
penetrate deeper into the disk interior and photodesorb CO from
the (small) reservoir of cold dust grains that remains at large radii
(e.g., Hersant et al. 2009).

Nevertheless, a physical origin for such a dramatic drop in
the dust densities and/or the millimeter-wave dust opacities is
not obvious. One possibility is that the disk has been perturbed
by a long-period (as yet unseen) companion. If a faint object
is embedded in the disk near the apparent edge of the 870 µm
emission distribution, it might open a gap that splits the disk
into two distinct reservoirs and generate the warp asymmetry
suggested by Roberge et al. (2005). But, a narrow gap alone
would not account for the SMA continuum observations. The
millimeter-wave luminosity exterior to the gap would still need
to be decreased, perhaps because the particles at those larger
radii were preferentially unable to grow to millimeter sizes.
Weinberger et al. (2002) quote deep limits on the H-band point
sources in the TW Hya disk that suggest there are no companions
more massive than ∼6 MJup near 60 AU, according to the Baraffe
et al. (2003) models (the corresponding mass limit is higher
for the models of Marley et al. 2007). Certainly, this kind of
truncation or other forms of substructure could be invoked to
explain the sharp radial edge in the SMA dust observations.
But rather than engage in further speculation on the details, it
should suffice to point out that the potential for substructure
or other anomalies in the TW Hya disk can be tested with
a substantial increase in resolution and sensitivity. Moreover,
spectral imaging of optically thinner gas tracers (e.g., the CO
isotopologues) would make for an ideal test of the origins
of the apparent CO-dust size discrepancy. Fortunately, such
observations will shortly be available as the Atacama Large
Millimeter Array (ALMA) begins routine science operations.

There is a compelling alternative explanation that has a more
concrete physical motivation. In any protoplanetary disk, the
thermal pressure of the gas is thought to cause it to orbit
the star at slightly sub-Keplerian rates, generating a small

10

TW Hya 

HD 142527 

HD 163296 

Protoplanetary disk 
Radius: 100 ~ 800 AU 
Mass: 10-4 ~ 10-1 M  
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SMA Observations 
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Radial Profiles of Rotational Velocities 
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Evolution of Rotational Profiles 

Detection limit of the 
SMA observations 

B335 
IRAS 4B 

Yen et al. 2013 

Keplerian rotation 

Rotation with a conserved 
angular momentum 

From slow to fast and then to Keplerian rotation 
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ALMA Observations Contour: total integrated intensity 
Color: mean velocity  

•  L1527 •  TMC-1A •  L1489 
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Yen et al. 2014; Ohashi et al. 2014; 
Aso et al. submitted to ApJ 

•  Symmetric with respect to the protostar 
•  Clear velocity gradient perpendicular to the outflow 
•  Can be reproduced with simple disk models 



From Infall to Keplerian Rotation 
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From Infall to Keplerian Rotation 
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Disks around Class 0 and 0/I Protostars? 

IRAS 03282+3035 IRAS 03293+3039 Per-emb 16

NGC 1333 IRAS 4A NGC 1333 IRAS 4B Per-emb 9
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Yen et al. 2015 

•  Most (14/17) of Class 0 protostars likely can have 
Keplerian disks of a 100 AU scale. 

•  Three sources showing no sign of rotation  
 Keplerian disks (if present) are small <10 AU. 



Possible Sign of Magnetic Braking 
•  Multi-scale observations of B335  

Saito et al. 1999 
Yen et al. 2010 
Yen et al. 2011 
Yen et al. in prep. 
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Summary 
•  SMA observations:  

Evolution from slow, to fast, and to Keplerian rotation 

on scales of ~1000 AU 

•  ALMA observations:  

Transition from infall to Keplerian rotation 

•  Larger sample: 

Class 0 sources likely can have disks of a 100 AU scale 

•  Subsample:  

No clear sign of rotation  very small disk <10 AU.  

Candidates of effective magnetic braking. 


