

What is a Giant Molecular Clouds?

Are Observers and Simulators Discussing the Same Star-forming Clouds?

Hsi-An Pan

Department of Physics, Hokkaido University, Japan

Elizabeth Tasker¹, Yusuke Fujimoto¹, Erik Rosolowsky², Dario Colombo², Samantha Benincasa³ & James Wadsley³

¹Hokkaido University

²University of Alberta

³McMaster University

Outline

Comparisons between observations and simulations become a key tool in understanding the results in ALMA era, but:

- I. Are Observers and Simulators Discussing the Same Molecular Clouds?
- 2. Do cloud properties change when different methods are used?
 - Introduction
 - General comparison of Simulated and Observed clouds
 - Position and median cloud properties
 - Match clouds properties
 - Simulation vs. Observation plots
 - Observation prospects
 - What our clouds look like in ALMA observations?

Simulation versus Observation

Data Structure • 6 dimensions

3D position (x,y,Z)

3D velocity (vx, vy. vz)

• 3 dimensions

2D position (RA, Dec)

ID velocity (vlos)

spectral cube, channel map

direct cloud properties

projected cloud properties

Cloud Boundary fixed threshold

100 H/cc (co)

1000000 H/CC (HCN)

ratio of intensity to noise

3 x noise level

5 x noise level

Methods

- I. Are Observers and Simulators Discussing the Same Molecular Clouds?
- 2. Do cloud properties change when different methods are used?

Simulated clouds:

- fix threshold (CO)

3D+3v

compare cloud properties

Synthetic observation

"Observed" clouds

Are all clouds observable in reality?

See Fujimoto et al. 2014 for the simulation

General Cloud Properties

Positions

(Median) Properties

Simulated vs. Observed

Number

1029 vs. 971

Mass

3.7e5 vs. 3.6e5

M_O

Radius

14.2 vs. 14.2

velocity dispersion

4 vs. 5

km/s

Virial Parameter

1.0 vs. 1.0

A simulation cloud and an "observed" cloud are matched if they originate from the same density structure.

Clouds that have counterparts in another data structure: 70%

 Plots: e.g., Simulated mass vs. "Observed" mass Simulated radius vs. "Observed radius"

•••

•••

Do cloud properties change when different methods are used?

"Observed" versus Simulated (2D+1v versus 6D)

"Observed" versus Simulated

Synthetic Obs

Observations of High-Σ Clouds

high resolution high resolution

low resolution

Synthetic Obs

Observations of Low-Σ Clouds

Simulated high resolution high resolution low resolution low sensitivity high sensitivity high sensitivity

None of small clouds is detected!

Summary

- I. Are Observers and Simulators Discussing the Same Molecular Clouds? Ans: 70 % are the same
- 2. Do cloud properties change when different methods are used?
 Ans: Scatter within a factor of two
 - We cataloged molecular clouds in a simulated galaxy in both 3D (simulated clouds) and 2D + 1v (observed clouds), then compared their properties.
 - Typical (median) cloud properties such as number, mass, radius are consistent between the simulated and the "observed" clouds.
 - 70% of clouds have counterparts in another data structure, cloud properties scatter within a factor of only two between two techniques.
 - Both observations and simulations show bimodal mass surface density. The small objects are not observable with our synthetic observations of ALMA.

Match: distance of two centers is less than either one or both radii

Not Match

