HinOTOR

<u>Hi</u>roshima U<u>n</u>iversity <u>O</u>perated <u>T</u>ibet <u>O</u>ptical <u>R</u>obotic <u>I</u>mager

Following up EM counterpart of GW using a new robotic telescope with 3 colours camera in Tibet

> Yousuke Utsumi (Hiroshima Univ.) HinOTORI members in collaboration with NAOC Ali observertory, NAOJ

Background

- Gravitational Wave (GW) "emits" from SN or a collapse of compact objects
- Large GW experiments are constructing and will start to find GW sources in 2017 with 100 deg² of positional accuracy.
- <u>To confirm GW detection</u>, important to locate counterpart phenomena.
- <u>To understand nature of GW sources</u>, important to monitor optical flux and variation with multi-band.
- Our approach is to construct a global optical monitoring network

Ali, Tibet (西蔵阿里)

• One of candidate sites developed by Prof Yao (NAOC)

Comparison with world's class observatory

	Subaru	Gar
Location	Maunakea, Hawaii	Ali, Tibet
Clear sky ratio	74% (avg. Jan 2000-)	75% (Jan2013)
Seeing	0.64" (avg. Jan 2000-)	0.8" (OctNov. 2011)
Best seeing		0.37" (Nov. 2011)
Altitude	4200m	5100m
Acesss	Easy	Near by airport

Key points of this project

- Wide field imaging capability to make survey faster \rightarrow 50cm, F/8 RC+Corrector lens (23'x23')
- Fine image quality to obtain high S/N
 - \rightarrow Introducing the compensator (spot rms < 0.7")
- A merit of high altitude (5100m)
 →u-channel

Our telescope

- Alluna Optics, Germany
- Ritchey-Chrétien
- D=510mm, F/8
- back focus: 455, usable 350mm
- Commercial product (but custom order to extend back focus)
- Dealt in Japan

Final design of optical system layout HinOT Two spherical lenses in each band

Compensator and optimised angle

Compensator

- Two spherical lenses perfectly correct aberrations
- Compensator is introduced
- Less bending angle as possible (~0.5deg)
- AR coating is optimised on each channel ~98-99%

Expected spot diagram

All spots are enough small compared to pixel and airy spot

u-band capability

HinOTORI
 Usual optical glasses and atmosphere absorb UV photons

- choose a UV enhanced CCD
- Select Fused silica to obtain UV photons
- Also altitude of Ali helps to collect UV photons

Arrived components

50cm telescope

Equatorial mount

Optical adjustment with Kanata

- Test on Kanata telescope
- Assembling and developing softwares

Telescope spec / performance test

- Δ (Focal length) ~1%
- $\Delta(Backfocus) < 1\%$
- No significant degradation
- Hard to achieve sub arcsec

Image quality w/o corrector

Image quality w/ corrector

Expanding wavefront with Zernike polynomials

- Hartmann const was ~0.7"
- Spherical aberration was dominated
 - must be eliminated by a pair of RC mirrors
- M2 mis-alignment along with optical axis might induce spherical aberration
- Improved const is ~0.3"

Summary

- Telescope and instrument are under testing with Kanata telescope
- Developing softwares to be "robotic"
- Maybe solved the entering problem to Tibet
- Installation work is planning in this year