QSO IDENTIFICATION WITH BATC MULTIBAND DATA

Sheen, Yun-Kyeong (신윤경/愼允卿) Department of Astronomy Yonsei University, Korea

Research Goal

A new trial for identifying QSO with BATC multiband data

Traditional Methods

Radio observation

- Quasar was discovered through the optical identification of strong radio source, after that lots of radio-loud quasars are detected

□ X-ray detection

- Investigation of strong x-ray sources
- Optical identification
 - Selection of QSO candidates from color-color diagram and follow-up spectroscopic observations

My Selection Criterion

Spectral Energy Distribution

obtained from spectrophotometry

BATC Color Survey

- BATC(Beijing-Arizona-Taipei-Connecticut) color survey uses 15 intermediate-band filters.
- Filters are designed to avoid strong night sky emission lines
- Spectral coverage : 3200Å ~ 9900Å
 FOV ~ 1°x 1°

Stellar SED from BATC System

QSO Composite Spectrum

Redshift Simulation for QSO Spectra

Redshift Simulation for QSO Spectra

Leo Triplet System

 Leo Triplet is composed of three galaxies (NGC3628,NGC3627, NGC3623) interacting each other for their tidal forces

Data Reduction

New QSO candidates

More than 17 new QSO candidates

They are selected based on their slope and emission lines in the SED

Follow-up observations are planned

Known QSOs in Leo Triplet field

No general agreement with model predictions for given redshifts

Some of them may not be real QSOs

Some of them may have different redshift

Summary

- We performed QSO identification with BATC multiband data
- 17 new QSO candidates were selected by examination of SED and follow-up observations are planned
- Known properties of QSOs are not enough to identify them