Spectral Modeling of Protostars Associated with Taurus Molecular Cloud

Takeshi Nakazato (Nobeyama Radio Observatory, Japan) collaborate with Taishi Nakamoto (University of Tsukuba, Japan)

Motivation

➢ How circumstellar environment affects star formation?

Purpose of This Work

Properties of protostars should reflect on the circumstellar environment.

- luminosity function
- circumstellar mass (envelope, disk, mass ratio)
- outflow activity

•

Research of the protostars with spectral modeling.

for each star forming region.
today's talk is results for Taurus.

Past Works

➢ Kenyon et al. (1993)

- first (and only?) systematic research for SED of protostars.
- sources are selected in Taurus.
- spherically symmetric radiative transfer.
- disk is not explicitly considered in their model.
- ➢ Osorio et al. (2003)
 - detailed modeling of L1551 IRS5.
 - multiplicity is considered.
 - circumstellar and circumbinary disks are considered.
 - approximate treatment of radiative transfer.

Systematic research of protostars with spectral modeling by using detailed protostar model is needed.

Treatment of Radiative Transfer

Variable Eddington Factor Method (Stone, Mihalas, & Norman 1992; Kikuchi, Nakamoto, & Ogochi 2002)

- 0th, 1st, and 2nd moment equations of Radiation HydroDynamics (RHD) are solved.
- The Variable Eddington Factor (VEF) is introduced to close RHD moment equations.
- The VEF is calculated from the specific intensity which is determined by solving radiative transfer equation.
- In our scheme, velocity is set to 0. (our aim is to find the radiative equilibrium for given situation)

VEF method can treat the radiation transfer without any ⁶ kind of approximation!

Source Selection

≻associated with Taurus

➤many observational point (roughly 10 or more)

➤wide variety of wavelength (radio ~ NIR)

Class		IRAS name	α(1950)	δ (1950)			
L1489IRS	Ι	04016+2610	04h01m40s6	+26°10'49″			
L1495N	Ι	04108+2803b	04h10m48s0	+28°03'49″			
04166+2706	0/I	04166+2706	04h16m37s8	+27°06'29″			
04169+2702	Ι	04169+2702	04h16m53s8	+27°02'48″			
04181+2655	Ι	04181+2655	04h18m06s4	+26°55'01″			
Haro6-5B	Ι	04189+2650	04h18m56s6	+26°50'28″			
IRAM04191	0	—	04h19m06s4	+15°22'46″			
DGTau	Ι	04240+2559	04h24m00s4	+25°59'30″			
B217	Ι	04248+2612	04h24m53s2	+26°12'39″			
Haro6-10	Ι	04263+2426	04h26m21s7	+24°26'26″			
TMC1A	Ι	04365+2535	04h36m31s0	+25°35'52″			
L1527	0/I	04368+2557	04h36m49s5	+25°57'16″			
TMC1	Ι	04381+2540	04h38m07s6	+25°40'48″			

7

Spectral Modeling

≻We could reproduce observed SEDs almost all wavelengths for each objects.

8

Spectral Modeling

Best Fitted Parameters for Each Objects

	L	rho_1	M_env	Sigma_1	M_disk	M_env/M_disk	M_total	theta_bp	inc
L1489IRS	1	-12.6	0.11	4000	0.054	2.03703704	0.164	15	10
L1495N	0.2	-14	0.0042	10000	0.14	0.03	0.1442	10	12
04166+2706	0.2	-13.3	0.021	40000	0.54	0.03888889	0.561	20	40
04169+2702	0.3	-13.52	0.013	65000	0.88	0.01477273	0.893	10	10
04181+2655	0.1	-13.34	0.017	500	0.0068	2.5	0.0238	13	10
Haro6-5B	0.2	-14	0.0042	50000	0.68	0.00617647	0.6842	10	11
IRAM04191	0.11	-11.22	2.5	6000	0.08	31.25	2.58	10	90
DGTau	2	-13.3	0.021	10000	0.14	0.15	0.161	10	60
B217	0.05	-13.34	0.017	20000	0.27	0.06296296	0.287	20	0
Haro6-10	2.5	-14	0.0042	10000	0.14	0.03	0.1442	10	12
TMC1A	1	-12.5	0.13	10000	0.14	0.92857143	0.27	20	22
L1527	2	-12	0.42	50000	0.68	0.61764706	1.1	22	60
TMC1	0.5	-14	0.0042	4000	0.054	0.07777778	0.0582	22	40

Correlation between Total Mass and Luminosity

• It seems that there are no correlation between these two values.

• The total circumstellar mass well separates Class 0 and I (also shown in Fig.1 of Bontemps et al. 1996).

Mass Ratio between Envelope and Disk

• A ratio M_{env}/M_{disk} has the value between 0.001 and 100. \rightarrow reflecting the property of the star-forming region?

• Class 0 and Class I are well separated by the total mass rather than the mass ratio.

 $\label{eq:mass} \begin{array}{l} \bullet \mbox{ mass ratio } M_{env}/M_{disk} \mbox{ is} \\ \mbox{ decreasing with increase of} \\ \mbox{ the total mass } M_{total}. \end{array}$

Interpretation of the Result

• Total (circumstellar) mass included into the radius 1000AU may be increasing with time at protostar phase.

• A decrease of the mass ratio indicates that an infalling material from the outer envelope would rapidly accrete onto the disk. ¹³

Substantial Difference between Class 0/I

- 1. Protostars classified into Class 0 are corresponding to a object which will evolve slightly massive stars than that of Class I.
 - large circumstellar mass.
 - low population (about 1/10 of Class I).
 - not contradict to youthfulness of Class 0?

- 2. Protostars classified into Class 0 are born into a core which initially has relatively large angular momentum than that forms Class I.
 - large circumstellar mass (accretion is prevented by the rotation?)
 - large outflow momentum (Bontemps et al. 1996)
 - correlation between outflow momnetum and initial rotational speed of the core (Tomisaka 2002)

Summary

➤We carried out the spectral modeling for 13 protostars associated with Taurus.

- Our model could reproduce almost all observed SEDs.
- mass ratio M_{env}/M_{disk}
 - $0.001 < M_{env}/M_{disk} < 100$
 - correlation between the total mass and the mass ratio
- Class 0/I classification
 - differences between Class 0 and I are originated from initial condition (mass, angular momentum)?

≻future work

comparison with other observation (imaging, line, etc.).
 comparison with other star forming region.

Advantages of Spectral Modeling

- ➤ central star-disk system is invisible due to the thick envelope.
- \succ spatial resolution is insufficient.
 - direct imaging of star-disk system is very difficult

HST /NICMOS images of Class I Object IRAS 04248+2612 (Padgett et al. 1999)

but spectral modeling do not need ...

- \succ high spatial resolution image.
- visibility of central region.
 (instead, multi-frequency observation is essential.)

Taurus Molecular Cloud

➢ one of the nearest star forming region (140pc).

 \succ no high-mass stars.

➢roughly 30 protostar candidates (Class 0, I).

Importance of Radiative Transfer

➢ Self-consistent treatment of radiation transfer is important (Nakazato, Nakamoto & Umemura 2003).

• temperature distribution

Importance of Radiative Transfer

➢ Self-consistent treatment of radiation transfer is important (Nakazato, Nakamoto & Umemura 2003).

- emerging SEDs
- outflow cavity is needed to reproduce the feature of NIR.

Basic Equations

> Energy Equation: $\frac{\partial e}{\partial t} = -4\pi\chi_P B + c\chi_E E$

Radiation Moment Equations:

$$\frac{\partial \left(e+E\right)}{\partial t} + \nabla \cdot F = 0$$
$$\frac{1}{c^2} \frac{\partial F}{\partial t} + \nabla \cdot \left(fE\right) = \frac{1}{c} \chi_F F$$

➤Variable Eddington factor

$$\mathbf{f} \equiv \frac{P}{E} = \frac{\oint nnId\Omega}{\oint Id\Omega}$$

 χ_P : Planck mean opacity

- χ_E : energy mean opacity
- χ_F : flux mean opacity
 - f : Variable Eddington factor

Calculate by solving radiation transfer equation

Radiative Transfer Equation (Isotropic Scattering)

- I_{v} : specific intensity
- *ds* : line element along the ray
- B_{ν} : Planck function
- χ_{v}^{abs} : absorption coefficient per unit volume
- $\chi_{v}^{\rm sca}$: scattering coefficient per unit volume

Flow Chart of the VEF Method

➢ Iterate following step until radiative equilibrium is achieved.

VEF method can treat the radiation transfer without any kind of approximation!

L1489IRS: Face-on View of Class 0?

M_{env}/M_{disk} is large → accretion is not so proceeded?
 Now inclination → tends to be observed as Class I

	Class	L	M_env	M_disk	M_env/M_disk	M_total	theta_bp	inc
L1489IRS	Ι	1	0.11	0.054	2.03703704	0.164	15	10

0.8

- L1489IRS may be younger than which is inferred from its apparent SED.
- An example which is not 0.25 applied to the classification 0.7 of the YSOs?

Correlation between Mass Ratio and Luminosity

• The mass ratio is not correlated with the bolometric luminosity.

Mass Ratio between Envelope and Disk

Mass Ratio between Envelope and Disk

• disk mass becomes large
 → mass ratio is small

semi-opening angle of cavity

semi-opening angle of cavity

L1489IRS: Edge-on View

• Resemble to L1527

L1489IRS

L1495N

04166 + 2706

04169 + 2702

04181 + 2655

Haro6-5B

IRAM04191

DG Tau

B217

Haro6-10

best fitted parameters $L_{*} = 2.5 L_{\odot}$ $\rho_1 = 10^{-14} \text{ g cm}^{-3}$ $(M_{env} = 0.0042 M_{\odot})$ $\Sigma_1 = 10^4 \text{ g cm}^{-2}$ $\left(M_{\rm disk}=0.14M_{\odot}\right)$ $\theta_{\rm bp} = 10^{\circ}$ $i = 12^{\circ}$

TMC1A

L1527

best fitted parameters $L_{*} = 2.0L_{\odot}$ $\rho_1 = 10^{-12} \text{ g cm}^{-3}$ $(M_{\rm env} = 0.42 M_{\odot})$ $\Sigma_1 = 5 \times 10^4 \text{ g cm}^{-2}$ $(M_{\rm disk} = 0.68 M_{\odot})$ $\theta_{\rm bp} = 22^{\circ}$ $i = 60^{\circ}$

TMC1

Evaluation of Squared-Residual

$$s.r. = \sum_{n=1}^{n_{data}} \frac{\{\log_{10}(4\pi D^2 v_n F_{v_n}^{obs}) - \log_{10}(4\pi D^2 v_n F_{v_n}^{sim})\}^2}{\log_{10}(4\pi D^2 v_n F_{v_n}^{obs})}$$

 n_{data} : number of data V_n : observed frequency F_{ν}^{obs} : observed flux density F_{ν}^{sim} : simulated flux density