Spectral Modeling of Protostars Associated with Taurus Molecular Cloud

Takeshi Nakazato
(Nobeyama Radio Observatory, Japan)
collaborate with
Taishi Nakamoto
(University of Tsukuba, Japan)

Motivation

$>$ How circumstellar environment affects star formation?

Purpose of This Work

$>$ Properties of protostars should reflect on the circumstellar environment.

- luminosity function
- circumstellar mass (envelope, disk, mass ratio)
- outflow activity
- ...

Research of the protostars with spectral modeling.
$>$ for each star forming region.
$>$ today's talk is results for Taurus.

Past Works

$>$ Kenyon et al. (1993)

- first (and only?) systematic research for SED of protostars.
- sources are selected in Taurus.
- spherically symmetric radiative transfer.
- disk is not explicitly considered in their model.
$>$ Osorio et al. (2003)
- detailed modeling of L1551 IRS5.
- multiplicity is considered.
- circumstellar and circumbinary disks are considered.
- approximate treatment of radiative transfer.

Systematic research of protostars with spectral modeling by using detailed protostar model is needed.

Protostar Model

$>2-\mathrm{D}$ axisymmetric
$>$ Three components;
> Central star: single star $\begin{cases}\text { Luminosity } & L_{*} \\ \text { Temperature } & T_{*} \\ \text { Mass } & M_{*}=0.5 M_{\odot}\end{cases}$
> Circumstellar disk:
[Surface density at 1AU Σ_{1} Power law index $p=1.5$
> Envelope:
\int Density at 1AU ρ_{1}
Power law index $q=1.5$
Semi-opening angle θ_{bp}
> Temperature: Radiative equilibrium

$$
\int_{0}^{\infty} \chi_{v}^{\mathrm{abs}} B_{v} d v=\int_{0}^{\infty} \chi_{v}^{\mathrm{abs}} J_{v} d v
$$

Outflow region
$1 / 100$ smaller than envelope density

Treatment of Radiative Transfer

$>$ Variable Eddington Factor Method (Stone, Mihalas, \& Norman 1992; Kikuchi, Nakamoto, \& Ogochi 2002)

- 0th, 1st, and 2nd moment equations of Radiation HydroDynamics (RHD) are solved.
- The Variable Eddington Factor (VEF) is introduced to close RHD moment equations.
- The VEF is calculated from the specific intensity which is determined by solving radiative transfer equation.
- In our scheme, velocity is set to 0 .
(our aim is to find the radiative equilibrium for given situation)

VEF method can treat the radiation transfer without any ${ }_{6}$ kind of approximation!

Source Selection

$>$ associated with Taurus
$>$ many observational point (roughly 10 or more)
$>$ wide variety of wavelength (radio \sim NIR)

	Class	IRAS name	α (1950)	δ (1950)
L1489IRS	I	04016+2610	04h01m40s6	+26 ${ }^{\circ} 10^{\prime} 49^{\prime \prime}$
L1495N	I	04108+2803b	04h10m48s0	+28 ${ }^{\circ} 03^{\prime} 49^{\prime \prime}$
04166+2706	0/I	04166+2706	04h16m37s8	+27 ${ }^{\circ} 06^{\prime} 29^{\prime \prime}$
04169+2702	I	04169+2702	04h16m53s8	+27 ${ }^{\circ} 02^{\prime} 48^{\prime \prime}$
04181+2655	I	04181+2655	04h18m06s4	+26 ${ }^{\circ} 55^{\prime} 01^{\prime \prime}$
Haro6-5B	I	04189+2650	04h18m56s6	+26 ${ }^{\circ} 50^{\prime} 28^{\prime \prime}$
IRAM04191	0	-	04h19m06s4	+15 $5^{\circ} 22^{\prime} 46^{\prime \prime}$
DGTau	I	04240+2559	04h24m00s4	+25 ${ }^{\circ} 59^{\prime} 30^{\prime \prime}$
B217	I	04248+2612	04h24m53s2	+26 ${ }^{\circ} 12^{\prime} 39^{\prime \prime}$
Haro6-10	I	04263+2426	04h26m21s7	+24* $26^{\prime} 26^{\prime \prime}$
TMC1A	I	04365+2535	04h36m31s0	+25 ${ }^{\circ} 35^{\prime} 52^{\prime \prime}$
L1527	0/I	04368+2557	04h36m49s5	+25 ${ }^{\circ} 57^{\prime} 16^{\prime \prime}$
TMC1	I	$04381+2540$	04h38m07s6	$+25^{\circ} 40^{\prime} 48^{\prime \prime}$

Spectral Modeling

$>$ We could reproduce observed SEDs almost all wavelengths for each objects.

Spectral Modeling

Best Fitted Parameters for Each Objects

Correlation between Total Mass and Luminosity

Mass Ratio between Envelope and Disk

- A ratio $\mathrm{M}_{\mathrm{env}} / \mathrm{M}_{\text {disk }}$ has the value between 0.001 and 100 . \rightarrow reflecting the property of the star-forming region?
- Class 0 and Class I are well separated by the total mass rather than the mass ratio.
- mass ratio $\mathrm{M}_{\text {env }} / \mathrm{M}_{\text {disk }}$ is decreasing with increase of the total mass $\mathrm{M}_{\text {total }}$.

Interpretation of the Result

- In protostar phase, there is a certain amount of the mass in the envelope outer than 1000AU (Masunaga \& Inutsuka 2000; Motte \& André 2001)

An increase of the total mass $\mathrm{M}_{\text {total }}$ arises from a mass infall from the outer envelope?

- Total (circumstellar) mass included into the radius 1000AU may be increasing with time at protostar phase.
- A decrease of the mass ratio indicates that an infalling material from the outer envelope would rapidly accrete onto the disk.

Substantial Difference between Class 0/I

1. Protostars classified into Class 0 are corresponding to a object which will evolve slightly massive stars than that of Class I.

- large circumstellar mass.
- low population (about 1/10 of Class I).
- not contradict to youthfulness of Class 0 ?

2. Protostars classified into Class 0 are born into a core which initially has relatively large angular momentum than that forms Class I.

- large circumstellar mass (accretion is prevented by the rotation?)
- large outflow momentum (Bontemps et al. 1996)
- correlation between outflow momnetum and initial rotational speed of the core (Tomisaka 2002)

Summary

$>$ We carried out the spectral modeling for 13 protostars associated with Taurus.

■ Our model could reproduce almost all observed SEDs.
■ mass ratio $\mathrm{M}_{\text {env }} / \mathrm{M}_{\text {disk }}$

- $0.001<\mathrm{M}_{\mathrm{env}} / \mathrm{M}_{\text {disk }}<100$
- correlation between the total mass and the mass ratio

■ Class 0/I classification

- differences between Class 0 and I are originated from initial condition (mass, angular momentum)?
>future work
■ comparison with other observation (imaging, line, etc.).
■ comparison with other star forming region.

Advantages of Spectral Modeling

$>$ central star-disk system is invisible due to the thick envelope.
$>$ spatial resolution is insufficient.

HST /NICMOS images of Class I Object
IRAS 04248+2612 (Padgett et al. 1999)
but spectral modeling do not need ...
$>$ high spatial resolution image.
$>$ visibility of central region.
(instead, multi-frequency observation is essential.)

Taurus Molecular Cloud

$>$ one of the nearest star forming region (140pc).
$>$ no high-mass stars.
$>$ roughly 30 protostar candidates (Class 0, I).

Kenyon et. al. 1990

Importance of Radiative Transfer

$>$ Self-consistent treatment of radiation transfer is important (Nakazato, Nakamoto \& Umemura 2003).

- temperature distribution

Importance of Radiative Transfer

$>$ Self-consistent treatment of radiation transfer is important (Nakazato, Nakamoto \& Umemura 2003).

- emerging SEDs
- outflow cavity is needed to reproduce the feature of NIR.

Basic Equations

$>$ Energy Equation:

$$
\frac{\partial e}{\partial t}=-4 \pi \chi_{P} B+c \chi_{E} E
$$

$>$ Radiation Moment Equations:

$$
\begin{aligned}
& \frac{\partial(e+E)}{\partial t}+\nabla \cdot F=0 \\
& \frac{1}{c^{2}} \frac{\partial F}{\partial t}+\nabla \cdot(\mathrm{f} E)=\frac{1}{c} \chi_{F} F
\end{aligned}
$$

χ_{P} : Planck mean opacity
χ_{E} : energy mean opacity
χ_{F} : flux mean opacity
f : Variable Eddington factor

Radiative Transfer Equation (Isotropic Scattering)

$$
\begin{aligned}
& \frac{\mathrm{d} I_{v}}{\mathrm{~d} s}=\frac{-\left(\chi_{v}^{\mathrm{abs}}+\chi_{v}^{\mathrm{sca}}\right) I_{v}}{\text { extinction }}+\frac{\chi_{v}^{\mathrm{abs}} B_{v}}{\text { emission }}+\frac{\chi_{v}^{\mathrm{sca}} \frac{1}{4 \pi} \oint I_{v} d \Omega}{\text { scattering }} \\
& \text { (absorption+scattering) }
\end{aligned}
$$

I_{v} : specific intensity
$d s$: line element along the ray
B_{v} : Planck function
$\chi_{v}^{\text {abs }}$:absorption coefficient per unit volume
$\chi_{v}^{\text {sca }}$:scattering coefficient per unit volume

Flow Chart of the VEF Method

$>$ Iterate following step until radiative equilibrium is achieved.

VEF method can treat the radiation transfer without any kind of approximation!

L1489IRS: Face-on View of Class 0?

$>\mathrm{M}_{\text {env }} / \mathrm{M}_{\text {disk }}$ is large \rightarrow accretion is not so proceeded?
$>$ low inclination \rightarrow tends to be observed as Class I

	Class	L	M_env	M_disk	M_env/M_disk	M_total	theta_bp	inc
L1489IRS	I	1	0.11	0.054	2.03703704	0.164	15	10

- L1489IRS may be younger than which is inferred from its apparent SED.
- An example which is not applied to the classification of the YSOs?

Correlation between Mass Ratio and Luminosity

- The mass ratio is not correlated with the bolometric luminosity.

Mass Ratio between Envelope and Disk

- envelope mass becomes large
\rightarrow mass ratio is large
$\log _{10}\left(M_{\mathrm{env}} / M_{\odot}\right)$

Mass Ratio between Envelope and Disk

- disk mass becomes large
\rightarrow mass ratio is small
$\log _{10}\left(M_{\text {disk }} / M_{\odot}\right)$

semi-opening angle of cavity

semi-opening angle of cavity

L1489IRS: Edge-on View

- Resemble to L1527

L1489IRS

best fitted parameters
$L_{*}=1.0 L_{\odot}$
$\rho_{1}=2.5 \times 10^{-13} \mathrm{~g} \mathrm{~cm}^{-3}$
$\left(M_{\mathrm{env}}=0.11 M_{\odot}\right)$
$\Sigma_{1}=4 \times 10^{3} \mathrm{~g} \mathrm{~cm}^{-2}$
$\left(M_{\text {disk }}=0.054 M_{\odot}\right)$
$\theta_{\mathrm{bp}}=15^{\circ}$
$i=10^{\circ}$
squared-residual $=0.021$

L1495N

$04166+2706$

best fitted parameters
$L_{*}=0.2 L_{\odot}$
$\rho_{1}=5.0 \times 10^{-14} \mathrm{~g} \mathrm{~cm}^{-3}$
$\left(M_{\mathrm{env}}=0.021 M_{\odot}\right)$
$\Sigma_{1}=4 \times 10^{4} \mathrm{~g} \mathrm{~cm}^{-2}$
$\left(M_{\text {disk }}=0.54 M_{\odot}\right)$
$\theta_{\mathrm{bp}}=20^{\circ}$
$i=40^{\circ}$
squared-residual $=0.12$

$04169+2702$

best fitted parameters
$L_{*}=0.3 L_{\odot}$
$\rho_{1}=3.0 \times 10^{-14} \mathrm{~g} \mathrm{~cm}^{-3}$
$\left(M_{\mathrm{env}}=0.0013 M_{\odot}\right)$
$\Sigma_{1}=6.5 \times 10^{4} \mathrm{~g} \mathrm{~cm}^{-2}$
$\left(M_{\text {disk }}=0.88 M_{\odot}\right)$
$\theta_{\text {bp }}=10^{\circ}$
$i=10^{\circ}$
squared-residual $=0.033$

$04181+2655$

best fitted parameters
$L_{*}=0.1 L_{\odot}$
$\rho_{1}=4.0 \times 10^{-14} \mathrm{~g} \mathrm{~cm}^{-3}$
$\left(M_{\mathrm{env}}=0.017 M_{\odot}\right)$
$\Sigma_{1}=5 \times 10^{2} \mathrm{~g} \mathrm{~cm}^{-2}$
$\left(M_{\text {disk }}=0.0068 M_{\odot}\right)$
$\theta_{\mathrm{bp}}=13^{\circ}$
$i=10^{\circ}$

Haro6-5B

best fitted parameters
$L_{*}=0.2 L_{\odot}$
$\rho_{1}=10^{-14} \mathrm{~g} \mathrm{~cm}^{-3}$
$\left(M_{\mathrm{env}}=0.0042 M_{\odot}\right)$
$\Sigma_{1}=5 \times 10^{4} \mathrm{~g} \mathrm{~cm}^{-2}$
$\left(M_{\text {disk }}=0.68 M_{\odot}\right)$
$\theta_{\mathrm{bp}}=10^{\circ}$
$i=11^{\circ}$
squared-residual $=0.022$

IRAM04191

best fitted parameters
$L_{*}=0.11 L_{\odot}$
$\rho_{1}>6.0 \times 10^{-12} \mathrm{~g} \mathrm{~cm}^{-3}$
$\left(M_{\mathrm{env}}>2.5 M_{\odot}\right)$
$\Sigma_{1}<6 \times 10^{3} \mathrm{~g} \mathrm{~cm}^{-2}$
$\left(M_{\text {disk }}<0.08 M_{\odot}\right)$
$\theta_{\mathrm{bp}}=10^{\circ}$
$i=90^{\circ}$

squared-residual $=2.39$

DG Tau

B217

Haro6-10

$$
\begin{aligned}
& \hline \text { best fitted parameters } \\
& \hline L_{*}=2.5 L_{\odot} \\
& \rho_{1}=10^{-14} \mathrm{~g} \mathrm{~cm}^{-3} \\
& \quad\left(M_{\mathrm{env}}=0.0042 M_{\odot}\right) \\
& \Sigma_{1}=10^{4} \mathrm{~g} \mathrm{~cm}^{-2} \\
& \quad\left(M_{\text {disk }}=0.14 M_{\odot}\right) \\
& \theta_{\text {bp }}=10^{\circ} \\
& i=12^{\circ}
\end{aligned}
$$

squared-residual $=0.21$

TMC1A

best fitted parameters

$$
\begin{aligned}
L_{*}= & 1.0 L_{\odot} \\
\rho_{1}= & 10^{-12.5} \mathrm{~g} \mathrm{~cm}^{-3} \\
& \left(M_{\mathrm{env}}=0.13 M_{\odot}\right) \\
\Sigma_{1}= & 10^{4} \mathrm{~g} \mathrm{~cm}^{-2} \\
& \left(M_{\text {disk }}=0.14 M_{\odot}\right) \\
\theta_{\text {bp }}= & 20^{\circ} \\
i= & 22^{\circ}
\end{aligned}
$$

squared-residual $=0.21$

L1527

TMC1

$$
\begin{aligned}
& \hline \text { best fitted parameters } \\
& \hline L_{*}=0.5 L_{\odot} \\
& \rho_{1}=10^{-14} \mathrm{~g} \mathrm{~cm}^{-3} \\
& \quad\left(M_{\mathrm{env}}=0.0042 M_{\odot}\right) \\
& \Sigma_{1}=4 \times 10^{3} \mathrm{~g} \mathrm{~cm}^{-2} \\
& \quad\left(M_{\text {disk }}=0.054 M_{\odot}\right) \\
& \theta_{\mathrm{bp}}=22^{\circ} \\
& i=40^{\circ}
\end{aligned}
$$

squared-residual $=0.18$

Evaluation of Squared-Residual

$$
\text { s.r. }=\sum_{\mathrm{n}=1}^{\mathrm{n}_{\text {das }}} \frac{\left.\log _{10}\left(4 \pi D^{2} v_{\mathrm{n}} F_{\nu_{\mathrm{n}}}^{\text {obs }}\right)-\log _{10}\left(4 \pi D^{2} v_{\mathrm{n}} F_{\nu_{\mathrm{n}}}^{\text {sim }}\right)\right\}^{2}}{\log _{10}\left(4 \pi D^{2} v_{\mathrm{n}} F_{v_{\mathrm{n}}}^{\text {obs }}\right)}
$$

$\mathrm{n}_{\text {data }}$: number of data
ν_{n} : observed frequency
$F_{v}^{\text {obs }}$ observed flux density
$F_{v}{ }^{\text {sim }}$: simulated flux density

